ORACLE

Oracle® Database
SQLJ Developer’s Guide and Reference

10g Release 2 (10.2)
B16018-02

August 2006

Oracle Database SQL] Developer’s Guide and Reference, 10g Release 2 (10.2)
B16018-02

Copyright © 1999, 2006, Oracle. All rights reserved.

Primary Author: Venkatasubramaniam Iyer

Contributing Author: Brian Wright, Janice Nygard

Contributor: Quan Wang, Ekkehard Rohwedder, Amit Bande, Krishna Mohan, Amoghavarsha Ramappa,
Brian Becker, Alan Thiesen, Lei Tang, Julie Basu, Pierre Dufour, Jerry Schwarz, Risto Lakinen, Cheuk Chau,
Vishu Krishnamurthy, Rafiul Ahad, Jack Melnick, Tim Smith, Thomas Pfaeffle, Tom Portfolio, Ellen Barnes,
Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ...ttt XVii
AN S Lo 1= VLT T T RRRR TR XVii
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiicc s XVii
Related DOCUITIEIESveoeeeeeiieetieeeeeeeteeeee ettt et ete et e eae e eteeaessaaeeseesateebeesneeesteesseeenseeseesnseenens Xviii
CONMVEIEIONS ..ooittieiiee ettt ettt e eeet e e e eeat e e e e e saaeeeesessaaaeeeeesaaeaseeeseaaseeeseessaaesessesnsssaessesssaeseeesansseeesessns XX

1 Overview

INtroduction t0 SOLJ ..ottt sttt sttt st 1-1
Basic COMNCEPLS ..o s 1-1
Oracle-Specific Code Generation Versus ISO Standard Code Generation...........ccccceceveereencee. 1-2

Overview of SQLJ COMPONENLS.........cccouiuiiiiiiiiiiiiiiiiiic s 1-2
SQLJ Translator and SQLJ RUN TIMEcccveiririiriirieieieieietetetee ettt sttt eeseeeseesessassessens 1-3
SQLJ Profiles (ISO Standard COAE)cccerueruerierieieieisisisiestestesteiesteeeseereesessessessessessessessessessesens 1-4

OVErvIEW Of PrOfiles ..o s 1-4
Binary Portability ..o 1-5

Overview of Oracle Extensions to the SQLJ Standard..............ccoecveviriieiinceneeeeeeeeee e 1-5
SQLJ Type EXteNSIONS.ccviiiiiiiiiiiteieiettetie ettt 1-5
SQLJ Functionality EXtENSIONS.......c.ccceuiuiiiiiiiiiiiiiiiiiiiicic e 1-6

Basic Translation Steps and Run-Time Processing..............cccovuviiiiniiiinniiiiinicnnicccenns 1-7
SQLJ Translation StEPSceueiiurieiiiicieie ettt 1-7
Summary of Translator Input and OUtpuUL.........cccceviiiiiviiiiiiiiii, 1-9

Translator INPUL ..o 1-9
Translator OULPUL ..o 1-10
Output File LOCAtIONS.......c.coviiiiiiiiiiiiiiiiiiiiciciciiici s 1-11
SQLJ RUN-TIimMe PrOCESSINGcovurueteiiiiicieieiiiciete ettt 1-11
Processing for Oracle-Specific Generated Code...........coooirmiiiiiiiiniiiiic 1-11
Processing for ISO Standard Generated Code............cooeruiiiiiriininiiiicieee 1-12

JDBC Versus SQLJ Sample Code.........ccoeimeirieinieineineinieeeieeereteesteensenessesesse st sessesessesene 1-12
JDBC Version of the Sample Code..........o.oviiiiiiiiiic 1-13
SQLJ Version of the Sample Codeccccoeiiiiiiiiiiininiiiiiiiii s 1-16

Alternative Deployment Scenarios..............cccccocieiiiiiiiiiiiiiiii s 1-17
Running SQLJ in Applets.........cuii 1-17

General Development and Deployment Considerations...........c.cocoeeeeeieiicceiiiicccnennnes 1-18
General End User Considerationsccceeeiviieieiiiiinininiiiceeeeeceeeeeeeeennes 1-18
Java Environment and the Java Plug-In ... 1-18

Introduction to SQLJ in the SEIVETccoceiiiiiiiiieeeee et 1-20

Alternative Development Scenarios...........cccoevviviiiiiiiiiii 1-21
SQLJ Globalization SUPPOTTcceiiuimiiiiiiiiccccececeeceee e nenes 1-21
SQLJ in Oracle JDeveloper 11g and Other IDESsccccccoceviiiniiiiiiicinccs 1-21
Windows Considerations............ccceviiiiiiiiiiiiiii s 1-22

2 Getting Started

Assumptions and Requirements..............ccccoovviiiiiiiiii 2-1
Assumptions About Your ENvironment............cccooevvrniiinnnnnnnrncnree e 2-1
Requirements for Using the Oracle SQL] Implementation............ccccocevveiiiiinniininnininne, 2-2
SQLJ Environment: Key Scenarios and Guidelinesc.ccooooeiiiiiiiiiiiiciiiiccccc 2-3
Environment Considerationscccoeeeiiiiiiiiiie s 2-4
SQLJ Backward Compatibilitycccceueieiiiriiiiicii 2-4

Checking the Installation and Configuration...............cccccoeiiiiiiiin 2-5
Check for Availability of SQL] and Demo Applications.........ccccccvvevevrevirirnninrnenereeeecreenene 2-5
Check for Installed Directories and Files...........c.ccccooviiiiiiiiiiiiiiii, 2-5
Set the Path and Classpath..............cooii e 2-6
Verify Installation of the sqljutl Packageccoviiiiiiiiiiiiiiccccccccccceeeenes 2-7

Testing the SetUP ... 2-7
Set Up the Run Time ConNectionoocriiiiiiiiicicc 2-8
Create a Table to Verify the Databasecccocovvviiirinnniinircccr e 2-9
Verify the JDBC DIivVer........ooiiiii s 2-9
Verify the SQLJ Translator and Run Timecccoovioiiioiiiiicce 2-10
Verify the SQLJ Translator Connection to the Database.............cccccccoeeciiciiciccicccene 2-10

3 Key Programming Considerations

Selection Of the JDBC DIMVETccooieiieieieeeee ettt ettt e sse st e ssessaessessseseessensaensenseenes 3-1
Overview of the Oracle JDBC DIIVETScc.coerierieiiieiieiirieriesiesiesie ettt ettt se e ae e 3-1
Driver Selection for TransSlationcociiririirieieieee ettt st sttt ea e 3-3
Driver Selection and Registration for RUn Timecccoovviiiinnnnnnnrnecereeecee e 3-4

Connection ConSIAETatioNScouiiiiiiiiiiiiiier ettt ettt et ettt be e b b e 3-4
Single Connection or Multiple Connections Using DefaultContext.........c.c.cococovueriiiinireinnnnan. 3-5
ClOSING CONMNECHIONS ...ttt 3-8
Multiple Connections Using Declared Connection Context Classes...........ccccoceuvveeviviiiirinennas 3-9
More ADOuUt the OTacle ClasScceireriiriirierieieieieieeettreetesteste e stetesteseeseesessessessessessassesseseesessens 3-9
More About the DefaultContext CLaSS.......cccveirieririeririeirieteietee ettt ne 3-11
Connection fOr TranSIatioNcovererieteieie ettt ettt et et aen 3-13
Connection fOr CUSTOMIZATIONecvecverieieieieieteeee ettt ettt ste st et se e ensesseneeneenesas 3-13

NULL-HaNdIING........ccooooiiiiiiiiiiic s 3-14
Wrapper Classes for NULL-Handlingcccoooiniiiiiiiiicc i 3-14
Examples of NULL-Handling ... 3-15

Exception-Handling Basics..........ccccocoiiniiiiiiiiiiis 3-15
SQLJ and JDBC Exception-Handling Requirements.............ccccoovveiiiiiinininnninninicnn, 3-16
Processing EXCEPHIONSc.cviiiiiiiiiiiiiiiiicc s 3-17
Using SQLEXCEPLION SUDCLASSESc.cuvuiuiuimiiiiiiiiiiciceciceieicieee et senenens 3-18

Basic Transaction CONtrol ..ottt ettt st 3-18
OVErVIEW Of TTANSACHONSeevieviriieiietiiesieietertete ettt et et e et e tesbestestestessestessesseneesseseesessesensan 3-19

Automatic Commits Versus Manual COmMMULS.......cccveivueiieiiiieiie e 3-19

Specifying Auto-Commit as You Define a Connectionccceeveiiiiiiiiceciiccicecc, 3-19
Modifying Auto-Commit in an Existing Connection ... 3-20
Using Manual COMMIT and ROLLBACKccooiiiii 3-20
Effect of Commits and Rollbacks on Iterators and Result Sets.........cccccoooriiiiiiiniiiinne. 3-21
USING SAVEPOINESocviviiiiiiiiiiiiiic s 3-21
Summary: First Steps in SQLJ Code...........cccooiiiiiiiiiiiic e 3-23
Oracle-Specific Code Generation (No Profiles)ccoooiiiiiiiiiccns 3-28
Advantages and Disadvantages of Oracle-Specific Code Generationccccccceueuvucueurnnene. 3-28
Environment Requirements for Oracle-Specific Code Generation...........cccccevveveveviiiininrnnnne 3-29
Code Considerations and Limitations with Oracle-Specific Code Generation...................... 3-29
SQL]J Usage Changes with Oracle-Specific Code Generation..........c.ccccccucueueueiciccicieniecuennnne. 3-31
Server-Side Considerations with Oracle-Specific Code Generation............ccccceveveveviieiniennee 3-32
Requirements and Restrictions for Naming ..., 3-32
Java Namespace: Local Variable and Class Naming Restrictions...........cccoceeerinneneninincnccnce. 3-33
SOQLJ NAIMESPACEocvviriririiiiereiciee e 3-34
SQL NAMESPACEvvvvititeteieieieteiete ettt 3-34
File Name Requirements and RestriCtionscccocciciciiiiiieceeecceeecceeeneeeeeneneees 3-35
Considerations for SQLJ in the Middle Tier........c..cccocecvirininininnineineeneeneeccnee e 3-35

Basic Language Features

Overview of SQLJ Declarationsc.ccccoeiviiniinieiinienincineneneesrertereeee e 4-1
Rules for SQLJ DEClarationscceiererierierieieietee ettt sttt et et ettt ebesbeseesbesbesteeenseneesessens 4-2
Tterator DEClarationsccoccuiuiuiiiiciiiciiceeicccce et 4-2
Connection Context Declarations ... 4-3
Declaration IMPLEMENTS Clause.........cccccocvviiiiiiininiiiniiiiiiiisessssssss s 4-3
Declaration WITH CLauSec.c.ccciiuiiiiiiiiccecececieeee ettt 4-4

Standard WITH Clause USAgecccceueueiiuiiiieiiiicie et 4-4
Oracle-Specific WITH Clause USage..........ccccueueiirieieiiiiicieieiccici e 4-6
Example: Returnabilitycccocoeiiiiiiiiiiicccccceeeeceeeeeeee e 4-7

Overview of SQLJ Executable Statementscccoceveineineiniineincencenencenceereeeeeeieeenene 4-8
Rules for SQL] Executable Statementsccccecierieieieieieieiesie ettt se s eeseeneas 4-8
SQOLJ CLAUSES ...veuveuverveeieereeretiereetestesressessesessessessestaseasassessessassassassessessessessasessessessassessessensessassessnsensensens 4-8
Specifying Connection Context Instances and Execution Context Instances......................... 4-10
Executable Statement EXamples............ccoouoiiiiiiiiiiiic e 4-11
PL/SQL Blocks in Executable Statementsccveveerieveerieiiereeeeeeeeeereecreeteeceeeve e ere v eve s 4-11

Java Host, Context, and Result EXPreSSiOns.........c.coecevurvirieinieinieinenineeneinrecereseenesesresenneeenenene 4-12
Overview of HOst EXPIESSIONS........c.ccuiiiiiiriiiiiiiiiiiiiiiicicicci s 4-13
Basic Host EXPression SYNtaX.........cociiiiiiiiiiiiiicicccces s 4-13
Examples of HOst EXPIeSSIONSccvuiuiviiiiiiiiiiiiiiiiiiieei s 4-15
Overview of Result Expressions and Context EXpressionsccccoceviecneeinicniieinccnennn, 4-17
Evaluation of Java Expressions at RUn Timecccccccovriiiinniiinrrcicrececeeeeeeees 4-17
Examples of Evaluation of Java Expressions at Run Time (ISO Code Generation)............... 4-18
Restrictions on HOst EXPIessions. ... 4-24

Single-Row Query Results: SELECT INTO Statements...............ccccccoovviiiinniinniicine, 4-24
SELECT INTO SYNAX....coiimiiiiiiniiiiiiiiiiiniiissssss s 4-24
Examples of SELECT INTO Statements...........cccccccuvueiiiiiriiiniiininininiiinennninsseeesesescccaes 4-25

Examples with Host Expressions in SELECT-Listcccccoviiiiiiiiiiiiiiiicccee 4-25

SELECT INTO Error Conditions..........ccccvuviieueiiiniininiiiiiniiceersie s 4-26
Multirow Query Results: SQLJ Iterators ... 4-26
TteTator CONCEPESviviiiitiitct s 4-27
Introduction to Strongly Typed Iteratorsccooeiuiiiiiiiiiiiic 4-27
Introduction to Weakly Typed Iterators...........cccccoiiiiiiciciciceecceeecceeeneneenenens 4-29
General Steps in Using an Iterator..........oocouoiiiiiiiiiiicc 4-29
Named, Positional, and Result Set TteratOrS........cooueevvieeeeeieeiriieceeeetee ettt ettt 4-30
Using Named TEerators ...t eeeees 4-31
Using Positional Iterators..........c.cirueiiiiiieiic 4-34
Using Iterators and Result Sets as Host Variablescccccovviiniiiiiiinninin, 4-37
Using Iterators and Result Sets as Iterator ColUmMNSccccceueueuiririiiicinnncceceeceeeees 4-39
Assignment Statements (SET) ... 4-41
Stored Procedure and Function Calls ..o 4-42
Calling Stored PrOCEAUTIEScccceuiuimimiiiiiiiiicieiieieeeeeee e 4-43
Calling Stored FUNCHONSc.ouiiiiieieiicie 4-44
Using Iterators and Result Sets as Stored Function Returnsccccoooiiiiiincininiccnne, 4-45

5 Type Support

Supported Types for Host EXpressions..............cccoceiiiiiiiiiiiiiiiies 5-1
Summary of SUPPOTtEd TYPES ...c.c.cueuruiiieirieiriiiicicieeeeeceeeeee et 5-1
Supported Types and Requirements for JDBC 2.0........ccocoeuiiiiiiiiiiiiiiicieicceeeeeenes 5-6
Using PL/SQL BOOLEAN, RECORD Types, and TABLE Typesc.ccccceuvniceivrinicieisinieas 5-7
Backward Compeatibility for Previous Oracle JDBC Releasescccocoeuvuvvrnnrerrncnencncrencnc. 5-8

SUPPOIt fOr STrEAMS ..o 5-9
General Use Of SQLJ SITEAIMScc.eeuiiuiriiriiieieieiie ettt ettt ettt et sbesaeste st e st et enteseeaeeaeas 5-9
Key Aspects of Stream SUppPort Classesc.ccccueueueurieiiieinieirieieieiereeereeeseeeseeeseses s 5-10
Using SQLJ Streams to Send Datacccueuiirieiiiiciciic 5-11
Retrieving Data into Streams: Precautions.. ... 5-13
Using SQLJ Streams to Retrieve Data ..o 5-14
Stream Class Methods ..o 5-15
Examples of Retrieving and Processing Stream Data..........cccoovoeueieiiiiiiiiieeiceccee, 5-17
SQLJ Stream Objects as Output Parameters and Function Return Values..........c.cccccccocuueee. 5-19

Support for JDBC 2.0 LOB Types and Oracle Type Extensionscccooeiiniiinncnnne. 5-20
Package oracle.SqLccciiiiiiiiiiiic s 5-21
Support for BLOB, CLOB, and BFILEccccccoiiiiiiiiiiiiicceecieeeeeeeeeeeneeeeeeeeee s 5-21
Support for Oracle ROWIDcccoiiiiiiis s 5-26
Support for Oracle REF CURSOR TYPEScccciuiuiiiiiiimiiiiiiiiiiiiiciciciieieeieeeieeseeeenenenes 5-29
Support for Other Oracle Database 11 Data TYPesccccccevuvururierreriiierrrccrceeeeeeeees 5-30
Extended Support for BigDecimal...........cccocviiiiiiiiiiiniiiiiiiiis 5-30

6 Objects, Collections, and OPAQUE Types

vi

Oracle Objects and Collections ... 6-1
Introduction to Objects and ColleCtioNScccceuiuiiiiiiiiiiiiiiiiiic e 6-1
Oracle Object Fundamentalsccccccceiiriiiiiniiiicrrccereee e 6-3
Oracle Collection FUNAAamENTAlS.........cccvevieieriiieieeieriecieeee ettt st e sae e sre e s esseesaesseessennas 6-3
Object and Collection Data TYPes........ccccccuiuiuiiiiiiiiiiiiiiiiciiiiicce e 6-4

CUSEOIM JAVA CLASSESeeveneviniiinieieieietete sttt sttt et sttt sttt ettt b e b e b s sa e e s aene 6-4

Custom Java Class Interface Specifications............ccoooeeieioiiiiiiiiic e, 6-5
Custom Java Class Support for Object Methodscccovvvirrriinnnnrrrrecr e 6-7
Custom Java Class ReQUIT@MENTSccoeuiiiiiiiiiieiiiiiiiiiiee s 6-8
Compiling Custom Java Classescceuirurieieiiiiicieiccic e 6-12
Reading and Writing Custom Datac.cccccciiiiiiiiiiiiieceeeeeeeeeeeeeeeeeeeeeenees 6-13
Additional Uses for ORAData Implementationsccccceevvviviiiiniiiiiicn, 6-13
User-Defined TYPeSccccovviviiiiiiiiiiiiii s 6-17
JPublisher and the Creation of Custom Java ClassSes............ccoocvrieriiriienierienieieneeeereeee e 6-20
What JPUDLISher PrOAUCESco.ooueiiieieieieeeeee ettt s 6-21
Generating Custom Java Classescccceueiirueieicicieiiccice e 6-23
JPublisher INPUT Files and Properties Files...........ccccoiiiiiiiniiinninrreceeeeeceeene 6-30
Creating Custom Java Classes and Specifying Member Names..............ccooooeeiniiiniiinicnncnan. 6-32
JPublisher Implementation of Wrapper Methods...........cccoiii 6-33
JPublisher Custom Java Class EXamplesccccovuiivriiinnnininnrrn e 6-34
Extending Classes Generated by JPUDLISher ..o, 6-37
Strongly Typed Objects and References in SQLJ Executable Statementsccc.cc.c..e. 6-39
Selecting Objects and Object References into Iterator Colummnscccccoecueciecicicinciccnnee. 6-40
Updating an ObJect ... s 6-40
Inserting an Object Created from Individual Object Attributes............cccceevvvivinniniinnnnnn 6-42
Updating an Object Reference..........ccccciiiiiiiiiiiiiccceccccce e 6-43
Strongly Typed Collections in SQL]J Executable Statementscccocoviiiiiiiiiiiinnn, 6-44
Accessing Nested Tables: TABLE syntax and CURSOR syntaX.........cccccooeorueieiiiiccieieincnnenan. 6-44
Inserting a Row that Includes a Nested Tablecccccccciiiiiiiiiniicccceceeeceees 6-45
Selecting a Nested Table into a Host EXPIeSSion ..ot 6-45
Manipulating a Nested Table Using TABLE SyntaX..........cccccooerueieiiiiiininicceecccecee, 6-47
Selecting Data from a Nested Table Using a Nested Iterator............cccccccocevieeeinrvvncnnene. 6-47
Selecting a VARRAY into a Host EXPIression...........cccuieiiiiicieicicciccc e, 6-49
Inserting a Row that Includes a VARRAYcoooiiiiiii 6-50
Serialized Java Objects..........cccccooiiiiiiiiiiii 6-50
Serializing Java Classes to RAW and BLOB Columns............cccovvvviinininininiininies 6-51
SerializableDatum: an ORAData Implementation.............cccccevvivivinniiinnnnininnes 6-52
SerializableDatum in SQL] Applications........cccceeueuiueuriririiiiriririieiereeeeeeeeeeeeeeeeeeeeeeee s 6-55
SerializableDatum (Complete Class)........cccoocviiviiiiiiiniiiiiii s 6-55
Weakly Typed Objects, References, and Collectionsccccccvvivvninnnnnnnnnnniiinne 6-57
Support for Weakly Typed Objects, References, and Collections............cccceuveververerrerenencnnes 6-57
Restrictions on Weakly Typed Objects, References, and Collections............cccccocevrvevirninnennne. 6-57
Oracle OPAQUE TYPES.......cooiimimiiiiiiiiiiiiiccic e 6-58

Advanced Language Features

Connection ContexXES. ... 7-1
Connection Context CONCEPLS ..o 7-2
Connection Context LOGIStiCS........ooeiiiiieiiiicieec 7-3
More About Declaring and Using a Connection Context Class..........ccccccoeueuririiiiiciniiniiininnenns 7-4
Example of Multiple Connection CONTEXESccccuiuiuiueiiiiiiieieiiieiceeieieeieieeieeeeereneeeeseneneeeanes 7-6
Implementation and Functionality of Connection Context Classes.............cooeeevvirieiiininnnen. 7-7
Using the IMPLEMENTS Clause in Connection Context Declarations............ccccccccceeuiinnines 7-8

vii

Semantics-Checking of Your Connection Context Usagecccoeeuevriicieiiiicieiciiceceene, 7-9

Standard Data SoUrce SUPPOTt ..o 7-9
SQLJ-Specific Data SOUICES.........cccuiuiuimimiiiiiiiicicieieicceeee e eeees 7-11
SQLJ-Specific Connection JavaBeans for JavaServer Pages..........cccccovviiiiiinninncnnn, 7-14
Execution COmtexts ...t 7-17
Relation of Execution Contexts to Connection CONteXtS.........coceeveurueurueieurirrereeiieeirreeeereenes 7-18
Creating and Specifying Execution Context InStances...........cccccceeveiicieiiiinceiiicccce, 7-19
Execution Context Synchronization ... 7-19
Execution Context Methodsc.ccccciiiiiiiiiiiiicccccceee s 7-20
Status Methodsccoiiiiiiiiiiii s 7-20
Control Methodsccoiiiiiiiiiiiiiiiiiii s 7-21
Cancellation Methodc.coiiiiiiiiiiiccceece e 7-22

Update Batching Methods ..o 7-22
Savepoint MethodsS ... 7-23

ClLOSE METhOd ...t 7-23
Example: Using ExecutionContext Methodsccccuoviiiiiiiiii 7-24
Relation of Execution Contexts to Multithreading.............ccoooeeiii, 7-24
Multithreading in SQLJcccooiiiiiiii s 7-25
Iterator Class Implementation and Advanced Functionalitycccccooniiiin 7-27
Implementation and Functionality of Iterator Classesccccooeoviiiiiiiiiiciiiiccecc, 7-27
Using the IMPLEMENTS Clause in Iterator Declarationsc.cooceeeioieiciiiiicccncccnee 7-28
Support for Extending Iterator Classes..........cccoviiiiimiiiiiiiiiiiicc s 7-29
Result Set TLeratorscciviiiiiiiiiiiiciicicc s 7-29
SCrollable TEETatOrS.c.c.cuiuiuiiciiiiiiicicieieiccc et 7-30
Advanced Transaction Control ... 7-35
SET TRANSACTION SYINAX....cciuimiiiiiiiiiiiiiieiiisiiieieisiississsssssse ettt 7-35
ACCESS MOde SEHNEGSoviiiiiiiiccc s 7-36
Isolation Level Settings.........cooeiiiiiiiiiiiiiiiiiiiicic s 7-36
Using JDBC Connection Class Methods ..., 7-37
SQLJ and JDBC Interoperability............cccocooiiiiiiniiiiiiii 7-37
SQL]J Connection Context and JDBC Connection Interoperability..........cccccoeveviiriviiniennnn 7-38
SQL]J Iterator and JDBC Result Set Interoperability..........cccoovioireiiiiiiice, 7-41
Support for Dynamic SQL...........ccooiiiiiiiiiii s 7-44
Meta Bind EXPIESSIONSccevviiiiiiiiiiiiiiiiiiciicicc s 7-44
SQLJ Dynamic SQL EXaMPIES........cccceiuimimiiiiiiiiiiiiiiiciiceicccceee et 7-46

8 Translator Command Line and Options

viii

Translator Command Line and Properties Files ..., 8-1
SQLJ Options, Flags, and PrefiXes ... 8-2
Command-Line Syntax and Operations..............ccoceueueiiiieioiiiicieicice e 8-9
Properties Files for Option Settings...........cccciiiiiiiiiiiiiiiicceeeee s 8-12
SQLJ_OPTIONS Environment Variable for Option Settings...........cccccceeuvuvvrrirnrvvnernenenes 8-15
Order of Precedence of Option Settingscooviiieiiiicieieiii s 8-15

Basic Translator OPHONSccoooiiiiiiiiiiiii e 8-16
Basic Options for the Command Line Only ... 8-17
Options for Output Files and Directories..........cccuviiveiniieiiiiiiiniiiiiccs 8-21
ConNection OPLIONScccveuiuiiiiiiiiiiiicie s 8-25

10

Options for Reporting and Line-Mapping ... 8-33

Options fOr DIMSc.oiiiiiiiiiiii s 8-38
Options for Code Generation, Optimizations, and CHAR Comparisonscccccceueueueunee. 8-40
Advanced Translator OPiONScccociiiiiiiiiiiii s 8-47
Prefixes that Pass Option Settings to Other Executables............c.cccocoooeiiiiiiiiiiiiii, 8-48
Flags for Special PrOCESSING........c.ccoueuiiiiiiiiriiicicicieieeeicte et 8-51
Semantics-Checking and Offline-Parsing Options.........c.ccccooicieieiiiiciniiicccc, 8-56
Translator Support and Options for Alternative Environments...............cccccooviiiiniinnne. 8-62
Java and Compiler OPtionscccccccuciiriririiiiiirrcereceeree e 8-62
Customization OPtiONSceiuiviiiiiiiiiiiiiici s 8-68

Translator and Run Time Functionality

Internal Translator OPerations ... 9-1
Java and SQL]J Code-Parsing and Syntax-Checkingccccocevvviininnnnnnnnin 9-1
SQL Semantics-Checking and Offline Parsingc.cccecvvvrrrennnnnnnnnnrreseeeeeeses e 9-2
COAE GENETALION. ...ttt ettt ettt s et b et bbbt s et s b st seseanenennencs 9-3
Java Compilation.......ccooeiiiiiiiiiiiiiiiii e 9-6
Profile Customization (ISO Code GENETration)ccecuevieieieeeierieesieseeieseseeesesessessessessessesses 9-7

Functionality of Translator Errors, Messages, and Exit Codescccooeiinniiinniinnn, 9-8
Translator Error, Warning, and Information Messagescccceeueuviiiiiiiinininiiiiiiiiiniiinns 9-8
Translator Statius MeSSAgES.........ccccvvviiiiiiiiiiiiiii s 9-10
Translator EXit COAES ...c.coeiriimiiriiiiiriciricee ettt ettt 9-10

SOLJ RUN T ..ttt ettt s sttt ebeenesuesae b besnens 9-11
SQLJ RUN Time Packagesccccccueuiuiuiiiiiiiiiiiiciciciccieieciceceiee e 9-11
Categories of RUN-TIime EITOrsccccooiiiiiiiiiiiiiiice s 9-13

Globalization Support in the Translator and Run Time..........cccccoooiiiiiiiiiiiiin, 9-13
Character Encoding and Language SUpPOTrt........c.cccccccuiiiiiiiiiieccceeeecceeeeeneenenes 9-14
SQLJ and Java Settings for Character Encoding and Language Supportcccceevveuennnn. 9-16
SQL]J Extended Globalization SUPPOItccccceuiiiiiiiiiiiiiiiiiiccs 9-18
Manipulation Outside of SQLJ for Globalization SUPPOTtcccccceueueucuiiciciiciiiciccrceeee 9-22

Performance and Debugging

Performance Enhancement Features.............cccoooviiiiiiicccc e 10-1
ROW PrefetChing ... 10-2
Statement Cachingccccciiuiiiiiiiiiiii s 10-3
Update BatChingcccciiiiiiiiiicccccceeee et 10-8
Column DefinitioNns........coeviviiiiiiiiiiiiiiiic 10-16
Parameter Size Definitions........ccceciirieicuiininieieiiriceeietece et 10-17

SQL]J Debugging Features ... 10-18
SQLJ -linemap Flag for Debuggingcccoeueueiiriiiiiiicicicice i 10-19
Server-Side debug OPtion........ccccccuiiiiiiiiiiiiiiiiiiii e 10-19
Introduction to the AuditorInstaller Specialized Customizer-............ccocoevvvrrnnninnnncnne. 10-19
Introduction to Developing and Debugging in Oraclel1g JDeveloper............ccccoeuevinnenee. 10-20

SQLJ Support for Oracle Performance Monitoring..............cccccociiiiiiiiiciiiiiiciicenne. 10-20
Overview of SQLJ DMS SUPPOTTccvoveirirriiiiriririe e 10-20
Summary of SQL] Command-Line Options for DMScccooiiiiii 10-21

11

SQLJ Run Time Commands and Properties File Settings for DMSccccccooiriiiiiinnnnn. 10-22
SQL] DMS SenSors and MELTICScc.eeueruirieriirieieieieieeteteeie sttt steste e ste st et et et ebesaestesbesaeseensensens 10-23
SQL] DMS EXQIMPLESccvuvviiiiiiciriricicecirie ettt 10-26

SQLJ in the Server

Introduction to Server-Side SQLJccoooieiiiiiirieieeeeeeee ettt ens 111
Creating SQL]J Code for Use in the Server ... 11-2
Database Connections Within the Server ..., 11-3
Coding Issues Within the SEIVer ... 11-3
Default Output Device in the Server ... 11-4
Name Resolution in the SEIver ... 11-5
SQL Names Versus Java INAMIESccecverereiereriereeiesieeiesteeseesteeeesesseesseesessessessesssessesssessesnss 11-5
Translating SQL]J Source on a Client and Loading Components...............cccccovvvvieiiinnnnnnnn 11-5
Loading Classes and Resources into the Server ..., 11-6
Naming of Loaded Class and Resource Schema ODbjJectscccovuvueerururerivnerrnnennrrercenes 11-7
Publishing the Application After Loading Class and Resource Files...........c.cccooooruiieinnnnnnn. 11-9
Summary: Running a Client Application in the Server............ccooooiiiiiii, 11-9
Loading SQL]J Source and Translating in the Server...............ccccooiiinniiinnn, 11-10
Loading SQLJ Source Code into the Server...........ccoiiiiii 11-11
Option Support in the Server Embedded Translator.............ccooooiiiiiiiic 11-12
Naming of Loaded Source and Generated Class and Resource Schema Objects................ 11-15
Error Output from the Server Embedded Translator ..o, 11-16
Publishing the Application After Loading Source Files...........ccccoooiiiiiiiiiiie, 11-16
Dropping Java Schema ODbjects............cccooiiiiiiiiiniiiii s 11-17
Additional Server-Side Considerations..............cccocooviviiiiiiiiiiiian 11-17
Java Multithreading in the SeIVeT...........c.oooiiiiiiiiii s 11-17
Recursive SQLJ Calls iN the SEIVETc.ccuviriririeieieieieteteese ettt ese e esessessessesnans 11-18
Veritying that Code is Running in the Server ... 11-19

Customization and Specialized Customizers

More About Profiles ..o A-1
Creation of a Profile During Code Generationcccoouvevrieiiiceieieiiceceeecce s A-2
Sample Profile ENEIYcoooiiiiiiiiccecccceeeee et A-2

SQLJ Executable STatement........cc.coueiueieieiririeiiierieseese ettt et A-2
Corresponding SQLJ Profile ENtry ..o A-3

More About Profile Customizationcccooeviieiiiiiiii A-3
Overview of the Customizer Harness and CUStOMIZers...........cccocouvvvvviiiiiiiininiininiiniinns A-4
Steps in the Customization Process. ..o A-4
Creation and Registration of a Profile Customization............cccccceeeuecuicccecinecceeeeeeenen A-5
Customization Error and Status Messages..........cccceueuirieieiiiicieieiccc e A-6
Functionality of a Customized Profile at Run Time.........c.cccoovoiiiiiiiiiiniiiccee A-6

Customization Options and Choosing a Customizer.................cccocoiiiniiiinniiinie, A-6
Overview of Customizer Harness Optionsccccoevevviiiiiiiiiiiiiiiiiiiicccs A-7

Syntax for Customizer Harness Options............cococoeueiiiiiiiniiicceiecce e A-7
Options Supported by the Customizer Harnesscccccccoeceecienciinnniccreeceeeenes A-8
General Customizer Harness OPptionsccceiiiiiiiiiiiiiiiiiiniiceee s A-8
Profile Backup Option (backup)cccceiiuiiiiiiiiiiiiiiiiicciciceeess A-9

Customization Connection Context Option (context) ... A-9

Customizer Option (CUSLOMIZET)curveviiiiieiiicieice e A-9
Customization JAR File Digests Option (digests) ... A-10
Command-line SYNtaX.......c.cceueiiirieiiiiieiec e A-10
Command-line example............coooioiiiiiiiiii e A-10
Properties file SYNMEAXcccciiiiiiiiiicceeceeeee et A-10
Properties file example...........cccoviiiiiiiiiiiniiiiii A-10
Default valUe ..o A-10
Customization Help Option (help).......cccccciiiiiiiiicccececreeeer s A-11
Command-line SYNtaX.......c.cceviiuriiieiiieiec e A-11
Command-line example............ccoooioiiiiiiiiiii e A-11
Properties file SYNMEAXcccciiiuiiiiieiceecceceee e A-11
Properties file example...........cccoviiiiiiiiiiiiiiii A-11
Default ValUe ... A-11
Customization Verbose Option (VErbose).........cccccccucuieuiuiueieiiiiieiciciecceieeeeeeeeeeneneneaees A-11
Command-line SYNtaX.......cccceviirieiiiiicieci e A-11
Command-line example............ccoooioiiiiiiiiiic e A-11
Properties file SYNMEaX ..ot A-11
Properties file example..........cccoviiiiiiiiiiiiiiii A-11
Default valUe ..o A-11
Customizer Harness Options for CONNECIONSc.cccueuiueucuiueieieieceieieeieeeieeeeieeeeeeeeeeees A-11
Customization User OPption (USET) ...t A-12
Command-line SYNTaXccocueiiiiuiieieiicci e A-12
Command-line eXamples........c.ccciuiiiiiiiiiiieeeeceeee s A-12
Properties file SyNtaX........cooceiirieieiiiiecc s A-12
Properties file examples............coooiiiiiiiiii A-12
Default ValUe ... s A-12
Customization Password Option (password) ... A-13
Command-line SYNTaXccccueviiiiiiieiiicic e A-13
Command-line eXample..........cccoceuiiiiiiiiiiiceecee s A-13
Properties file SyNtaX........ccoceviirieiiiiiiec s A-13
Properties file example..........cccccciiiiiiiiiiiiiiiiiiniiii s A-13
Default ValUe ... s A-13
Customization URL Option (Url)........ccccceiviiiiiiiiniiiiiiiiiicccsecee A-13
Command-liNe SYNEAX......cccccuiiiiiriiiiiiiiiiiici s A-13
Command-line eXample..........ccccccuiiiiiiiiiicceeeee s A-13
Properties file SYNtaX.......c.cooeuvieiiieiniiniiie e A-13
Properties file example..........cccccciiiiiiiiiiiiiiiiiiii s A-13
Default ValUe ... s A-13
Customization JDBC Driver Option (AIiVer) ... A-13
Command-liNe SYNEAX.....ccccccuiiuiiriiiiiiiiiii s A-13
Command-line eXample..........ccccciiiiiiiiiiieeeceee s A-13
Properties file SYNtaX.......c.ocoevieiiieiiiiniieie e A-14
Properties file example..........ccccccuiuiiiiiiiiiiiiiiiiiii s A-14
Default ValUe ... s A-14
Customizer Harness Options that Invoke Specialized Customizers...........ccccecovvvvvinininiinne A-14
Specialized Customizer: Profile Debug Option (debug).........cccoovvvviiiiiininiiiii A-14

xi

Xii

Command-line SYNTaXccceviirieieiiieiecic e A-14

Command-line example............coouiuiiiiiiiiici e A-14
Properties file SYNMEAXccccociiiiiiiieieececceeeeee e A-14
Properties file example.........c.ccoiiiiiiiiiiiii s A-14
Default ValUecccoiiiiiiiiiiiiiiii s A-14
Specialized Customizer: Profile Print Option (Print)cccccceovvevievvvincrrceereene A-15
Command-line SYNtaX.......ccceviirieiiiiieieei e A-15
Command-line example...........cooiiiiiiiiiiie e A-15
Properties file SYNMEAX ..o s A-15
Properties file example.........c.ccoiiiiiiiiiiiii s A-15
Default ValUe ..o A-15
Specialized Customizer: Profile Semantics-Checking Option (verify)cccccceeueunenene. A-15
Command-line SYNtaX.......cccceviieieieiiieie e A-15
Command-line example............ccooueiiiiiiiiii e A-15
Properties file SYNMEAXcccocociuiiiiiiieecccceeeee s A-15
Properties file example.........cccoiiiiiiiiiiii s A-16
Default ValUe ..o A-16
Overview of Customizer-Specific OPtiONS.........ccceucucurieiriiiiicriricereeeee s A-16
Oracle Customizer OPHiONSciiiiiuiiiiiiiiiii s A-16
Options Supported by the Oracle CUStOMIZETcc.cvoviriiiiiiicic A-16
Oracle Customizer Version Compatibility Option (compat)cccccoeeuvuverrcrvrnernenenes A-17
Command-line SYNtaXccceviiirieiiiiieie e A-17
Command-line example............ccooueiiiiiioiii e A-17
Properties file SYNMEAX ..o A-17
Properties file example...........ccoiiiiiiiiiiii s A-18
Default ValUecccoviiiiiiiiiiiiiiii s A-18
Oracle Customizer Force Option (fOrce).........cuiimiiiiiiiieceeceeeeeeenenenenenenens A-18
Command-line SYNtaX.......ccceviiirieiiiiieie e A-18
Command-line example............ccoouriiiiiiiiiii e A-18
Properties file SYNMEAXcccciiiiiiiiiiceccceeeee s A-18
Properties file example.........c.ccoiiiiiiiiiiiii s A-18
Default ValUec.coiiiiiiiiicicccc et s A-18
Oracle Customizer Column Definition Option (Optcols)........cccceeueueuirvviiicvviicrene A-18
Command-line SYNtaX.......ccceuiirieiiiiiieie e A-20
Command-line example..........ccccceuiiiiiiiiiiiiiii s A-20
Properties file SYNMEAXcccociuiiiiiiieieceecccee e A-20
Properties file example.........c.ccoiiiiiiiiiiii s A-20
Default ValUec.coiiiiiiiiicicicce et A-20
Oracle Customizer Parameter Definition Option (optparams)..........cccccceeuecueueeeueueueunnnes A-20
Command-line SYNtaXccceviiirieieiiieie e A-21
Command-line example..........ccccoeuiiiiiiiiiiiiiiii s A-21
Properties file SYNMEAXcccciuiiiiiiiiieececceeeee e A-21
Properties file example.........ccooviiiiiiiiii s A-21
Default ValUec.ooiriiiiiiicicicce et A-21
Oracle Customizer Parameter Default Size Option (optparamdefaults)......................... A-21
Command-line SYNtaXccceviirieieiiieieci e A-22
Command-line example..........ccccceuiiiiiiiiiiiiiiiii s A-22

Properties file SyNtaX........cococeuiviieiiiiiicicc e A-22

Properties file example...........ooeiiioiiiiiiic s A-22

Default ValUe ... s A-22

Oracle Customizer CHAR Comparisons with Blank Padding (fixedchar) A-22
Command-line SYNTaXccocueiiiieieieiiiei e A-22
Command-line eXample..........cccceciiiiiiiiiieeeeceee s A-22
Properties file SyNtaX........cooccueiiiriciiiicicce e A-22
Properties file example...........oooriiiiiiii s A-22
Default ValUe ... s A-22

Oracle Customizer Show-SQL Option (ShOWSQL)......cccccoeiiiniiiiiiiniiiiiiiiiiciinceens A-22
Command-line SYNtaX.......ccccueiiiiurueieiiici e A-23
Command-line eXample........c.cccociiiiiiiiiiiiiieeeceee s A-23
Properties file SyNtaX........cccoceuiiiricieiiiicecce e A-23
Properties file example.............oooriiiiiiiiiiic s A-23
Default ValUe ... s A-23

Oracle Customizer Statement Cache Size Option (stmtcache)..........cccocoviiiiiiiiiins A-23
Command-line SYNTaXccccueiiiiurieieiiccie e A-24
Command-line eXample........c.ccccciiiiiiiiiiiecee s A-24
Properties file SyNtaX........ccoceviirieieiiciecic s A-24
Properties file example.............ooriiiiiiiii s A-24
Default ValUe ... s A-24

Oracle Customizer Summary Option (SUMMATY)......ccccevrueieiriinieisiieeeece s A-24
Command-line SYNTaXccocueviiiiieieiiie e A-25
Command-line eXample..........cccciuiiiiiiiiiicee s A-25
Properties file SyNtaX........ccoceuiirieiiiiiiec s A-25
Properties file example...........oooriiiiiiiii s A-25
Default ValUe ... s A-25
Options for Other CUStOMUZETS...........coiiviiiiiiiict s A-25
SQLJ Translator Options for Profile Customization ..., A-26
JAR FILES fO1 PrOFIleSccueonvieiieiieieieieeeeee ettt sttt et ent et e st e sseeneeseennessesssensennsensenns A-26
JAR File ReQUITEMENLScoovoviviiiiiiiiiciciciiiccc e A-26
JAR File LOGISHICSvviiiiiiiiiiiicciccc s A-27
SQLCheckerCustomizer for Profile Semantics-Checkingccccoeiiiniiiinninnn A-27
Invoking SQLCheckerCustomizer with the Customizer Harness verify Option.................. A-28
Command-liNe SYNEAXccceuiuiiiiiiiiiiiiii s A-28
Command-line eXample.........ccccciiiiiiiiii s A-28
Properties file SYNTaXcoccueieiiiiiiiccie s A-28
Properties file eXample..........cccciiiiiiiiiiiiiiii s A-28
Default ValUe ..o A-29
SQLCheckerCustomizer OPtions..........ccieviviiiiiiiiiiiiiic s A-29
SQLCheckerCustomizer Semantics-Checker Option (checker)ccccevivvviiininininne. A-29
Command-liNe SYNEAXc.ccueuiuiuiiiiiiiicicieieecee e A-29
Command-line example.........c.ccoeiiiiiiiiiiiii s A-29
Properties file SYNEaX.......cccciiiiiiiiiiiiiccce s A-29
Properties file eXample.........ccoceuiiiiiiiiiiiiiiiiiiiccreee s A-29
Default Valle ..o s A-29
SQLCheckerCustomizer Warnings Option (Warn).........ccccceeeeeeeieiiecienineeeecceeeenes A-29

xiii

Xiv

Command-liNe SYNEAX......ccccovuiiiiiiiiiiiiieici s A-30

Command-line example..........ccccoeuiiiiiiiiiiiiiii s A-30
Properties file SYNMEAXccccociiiiiiiieieececceeeeee e A-30
Properties file example............coooiiiiiiiii A-30
Default ValUe ..o s A-30
AuditorInstaller Customizer for Debugging..............ccccccooiiiniiiiiiie A-30
Overview of Auditors and Code Layers..........ccccceviiiiiiiiiiiiiiiiiicces A-30
Invoking AuditorInstaller with the Customizer Harness debug Optionccccceoeeeenie.. A-31
Command-TNe SYNMEAX c...c.cucueuiuiueiiiiiiicicicicceee e A-31
Command-line example..........cccooiiiiiiiiiiiii A-32
Properties file SYNtaXccococueieiiiiciiiiici s A-32
Properties file eXample.........cccociiiiiiiiiiicicecce s A-32
Default ValUec.ccoiiiiiiiii s A-32
AuditorInstaller Run Time Output.......cccoouiiiiiiiiiiiic s A-32
AuditorInstaller OPHIONS.cccciiiiiiiiiiiccceeeeee e seeees A-33
AuditorInstaller Depth Option (depth) ... A-33
Command-liNe SYNEAX.......cccceiiiiiiiiiiiiiiiii s A-33
Command-line eXample........c.ccccccuiiiiiiiiiiceeee s A-33
Properties file SYNtaX........ccoiiiiiiiiiiicc s A-34
Properties file example...........coiiiiiiiiiiii s A-34
Defattlt Vallec.c.couiiiiiiiiiccccc s A-34
AuditorInstaller Log File Option (10g)......c.cccvvvueuiiiiiiiiiiiiiiciiiiiiciicccccccs A-34
Command-liNe SYNEAX.......cccceiiiiriiiiiiiiiiii s A-34
Command-line eXample..........cccoccuiiiiiiiiiiceceee s A-34
Properties file SYNtaX ... A-34
Properties file example...........ccooiiiiiiiiiiiiii s A-34
Defattlt Vallec.c.couiiiiiiiiice s A-34
AuditorInstaller Prefix Option (Prefix)........ccoiviiiviiiiiiiiiiienes A-34
Command-liNe SYNEAX......cccceiiiiiiiiiiiiiiii s A-34
Command-line eXample..........cccoccuiiiiiiiiiieeeee s A-34
Properties file SYNtaX ... A-34
Properties file example..........ccccoiiiiiiiiiiiiii s A-34
Defattlt Vallec.coiiiiiiiiicccc s A-34
AuditorInstaller Return Arguments Option (showReturns).........cccooeeeeiiieiiinnnnnnn A-34
Command-liNe SYNEAX......ccccuiuiuiiiiiiiiiiiiiiiiec s A-35
Command-line eXample........c.ccccccuiiiiiiiiiieeceeee s A-35
Properties file SYNtaX ..o A-35
Properties file eXxample..........cccoiiiiiiiiiiiii s A-35
Defattlt Vallec.couiiiiiiiiiicc s A-35
AuditorInstaller Thread Names Option (showThreads)ccccccouviiiiniiiinnnininnens A-35
Command-liNe SYNEAX.......cccccuiuiiiiiiiiiiiiiiiiiee s A-35
Command-line eXample..........ccccccuiiiiiiiiiiieceee s A-35
Properties file SYNEaX........coivviiiiiiiiiiiiiiii s A-35
Properties file eXxample.........cccccooiiiiiiiiiiiiii s A-35
Defattlt Vallec.coiiiiiiiiiiciccce s A-35
AuditorInstaller Uninstall Option (uninstall)..........cccccoooiiiiiniiiie A-35
Command-liNe SYNEAX.......ccccuiuiiiiiiiiiiiiiiciiiece s A-35

Command-line example.........c.ccoeiiiiiiiiiiiiiii s A-35

Properties file SYNtaX.......ccociiiiiiiiiiiiiiiicc s A-35
Properties file eXample........ccccceuiiiiiiiiiiiiiiiiiiecee s A-35
DEfatlt VAIUEoouveeeieiieeeeeeeee ettt ettt sre e e e s e sae b e beesrenraens A-36
Full Command-Line EXamplescccccccooviiiiiiiiiiiisss A-36

Index

XV

XVi

List of Tables

4-1 SQLJ StatemMent CLAUSEScoeruiriirieieieteteteeeteee ettt bbbttt ettt ebe b 4-9
4-2 SQLJ Assignment CLatSescoceuiiiiirieieiicie e 4-10
5-1 Type Mappings for Supported Host Expression Types.......c.ccccccceveiiiiiiiiniciiiiinicnennen, 5-2
5-2 Correlation between Oracle Extensions and JDBC 2.0 Typescccccovuireiiiiirieininnnen, 5-6
6-1 JPublisher SQL Type Categories, Supported Settings, and Defaultsc.cc.c..c....... 6-28
8-1 SQLJ Translator OPtionS ...t 8-2
8-2 SQLJ Support for javac OPtions.........cceieiiiiiiiiiiiiiiiiie s 8-8
8-3 Tests and Flags for SQL] Warnings.............ccoovreieiiinieiiiicieecce e 8-34
8-4 Oracle Online Semantics-Checkers Chosen by OracleChecker.............cccccooiriiininnnnen. 8-57
8-5 Oracle Offline Semantics-Checkers Chosen by OracleCheckerc.ccccoooriiiinnnnn. 8-57
8-6 Feature Comparison: Offline Parsing Versus Online Semantics-Checking 8-57
9-1 Steps for Generated Calls, ISO Standard Versus Oracle-Specific...........cccoevvviiiinininnnnn. 9-5
9-2 SQLJ Translator Error Message Categories..........cooceueiriiucieieiiicicieicee e 9-10
9-3 JDBC and SQLJ Types and Corresponding Globalization Types.........cccccccoooreriininnnen. 9-19

-XVii

-xviii Oracle Database SQLJ Developer's Guide and Reference

Audience

Preface

This preface introduces you to the Oracle Database SQL] Developer’s Guide and Reference,
discussing the intended audience and conventions of this document. A list of related
Oracle documents is also provided.

This manual is intended for anyone with an interest in SQL]J programming but
assumes at least some prior knowledge of the following;:

= Java
= SQL
= PL/SQL

= Java Database Connectivity (JDBC)
» Oracle Database

Although general knowledge of SQL and JDBC is sufficient, any knowledge of
Oracle-specific SQL and JDBC features would be helpful as well.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Xix

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XX

Also available from the Oracle Java Platform group are the following Oracle resources:
» Oracle Database Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle Database 11g and
provides general information about server-side configuration and functionality.
Information that pertains to the Oracle database Java environment in general,
rather than to a particular product such as JDBC or SQLJ, is in this book.

It also discusses Java stored procedures, which are programs that run directly in
the Oracle database. With stored procedures, Java developers can implement
business logic at the server level, thereby improving application performance,
scalability, and security.

» Oracle Database [DBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle implementation
of the JDBC standard. This includes an overview of the Oracle JDBC drivers,
details of the Oracle implementation of JDBC 1.22, 2.0, and 3.0 features, and
discussion of Oracle JDBC type extensions and performance extensions.

» Oracle Database JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate
user-defined SQL types or PL/SQL packages into Java classes. If you are
developing SQL]J or JDBC applications that use object types, VARRAY types,
nested table types, object reference types, or PL/SQL packages, then JPublisher
can generate custom Java classes to map to them.

The following OC4] documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

» Oracle Application Server Containers for [2EE Developer’s Guide

» Oracle Application Server Containers for J2EE Services Guide

» Oracle Application Server Containers for [2EE Security Guide

» Oracle Application Server Containers for [2EE Servlet Developer’s Guide

» Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

» Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference
» Oracle Application Server Containers for [2EE Enterprise JavaBeans Developer’s Guide
The following documents are from the Oracle Server Technologies group:

» Oracle XML DB Developer’s Guide

Oracle XML Developer’s Kit Programmer’s Guide

Oracle Database XML Java API Reference

Oracle Database Application Developer’s Guide - Fundamentals
Oracle Database Application Developer’s Guide - Large Objects
Oracle Database Application Developer’s Guide - Object-Relational Features
Oracle Database PL/SQL Packages and Types Reference

Oracle Database PL/SQL User’s Guide and Reference

Oracle Database SQL Reference

Oracle Database Net Services Administrator’s Guide

Oracle Database Advanced Security Administrator’s Guide
Oracle Database Globalization Support Guide

Oracle Database Reference

Oracle Database Sample Schemas

Note: Oracle error message documentation is available in HTML
only. If you have access to the Oracle Documentation CD only, you
can browse the error messages by range. Once you find the specific
range, use the "find in page" feature of your browser to locate the
specific message. When connected to the Internet, you can search
for a specific error message using the error message search feature
of the Oracle online documentation.

The following documents from the Oracle9i Application Server group may also be of
interest:

Oracle Application Server 103 Administrator’s Guide
Oracle HTTP Server Administrator’s Guide

Oracle Application Server 10g Performance Guide

Oracle Application Server 10g Globalization Guide

Oracle Application Server Web Cache Administrator’s Guide
Oracle Application Server 10g Upgrading to 10g (9.0.4)

The following are available from the Oracle9i JDeveloper group:

In North America, printed documentation is available for sale in the Oracle Store at

JDeveloper online help

JDeveloper documentation on the Oracle Technology Network:

http://www.oracle.com/technology/products/jdev/index.html

http://oraclestore.oracle.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

XXi

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN. Registration is free and can be done at

http://www.oracle.com/admin/account/index.html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

For documentation of SQL] standard features and syntax, refer to ANSI specification
X3.135.10-1998:

» Information Technology - Database Languages - SQL - Part 10: Object Language Bindings
(SQL/OLB)

You can obtain this from ANSI through the following Web site:

http://www.ansi.org/

(Click "Electronic Standards Store" and search for the specification number.)
The following location has SQLJ sample applications:

http://www.oracle.com/technology/sample_code/tech/java/sglj_jdbc/sglj.h
tml

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

s Conventions in Text

= Conventions in Code Examples

Note: Also note that command-line examples are for a UNIX
environment with a system prompt of "$". This is only by
convention and can be adjusted as appropriate for your operating
system.

Conventions in Text

There are various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis, or terms that are defined in the

XXii

Ensure that the recovery catalog and target

text. database do not reside on the same disk.

Convention

Meaning

Example

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the data files and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel_ clause.

Run old_release.SQL where old_release

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

<>

In this document, angle brackets are used
instead of regular brackets to enclose one
or more optional items. Do not enter the
angle brackets. (Regular brackets are not
used due to SQL]J syntax considerations.)

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= Omission of parts of the code that are
not directly related to the example

= That you can repeat a portion of the
code

DECIMAL (digits < , precision >)

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE AS subquery;

SELECT coll,
employees;

col2, ... ,

coln FROM

xXiii

Convention

Meaning

Example

Other notation

Italics

UPPERCASE

lowercase

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. These terms are
in uppercase to distinguish them from
terms you define. Unless terms appear in
brackets, enter them in the order and with
the spelling shown. However, because
these terms are not case-sensitive, you can
enter them in lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

acctbal NUMBER(11,2);

acct CONSTANT NUMBER (4) :=

CONNECT SYSTEM/system password

DB_NAME = database name

SELECT last_name,
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

SELECT last_name,
employees;

sglplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

3;

employee_id FROM

employee_id FROM

XXiv

1

Overview

This chapter provides a general overview of SQL]J features and scenarios. The
following topics are discussed:

s Introduction to SQLJ

s Overview of SQLJ] Components

s Overview of Oracle Extensions to the SQLJ Standard
= Basic Translation Steps and Run-Time Processing

= JDBC Versus SQLJ Sample Code

= Alternative Deployment Scenarios

= Alternative Development Scenarios

Introduction to SQLJ

This section introduces the basic concepts of SQL]J and discusses the complementary
relationship between Java and PL/SQL in Oracle Database applications. This section
covers the following topics:

= Basic Concepts

» Oracle-Specific Code Generation Versus ISO Standard Code Generation

Basic Concepts

SQLJ enables applications programmers to embed SQL statements in Java code in a
way that is compatible with the Java design philosophy. A SQL]J program is a Java
program containing embedded SQL statements that comply with the International
Standardization Organization (ISO) standard SQL] Language Reference syntax. The
Oracle SQL] implementation supports the ISO SQL]J standard specification. The
standard covers only static SQL operations, which are predefined SQL operations that
do not change in real time while a user runs the application. The Oracle SQL]J
implementation also offers extensions to support dynamic SQL operations, which are
not predefined and the operations can change in real time. It is also possible to use
dynamic SQL operations through Java Database Connectivity (JDBC) code or PL/SQL
code within a SQL]J application. Typical applications contain more static SQL
operations than dynamic SQL operations.

SQLJ consists of a translator and a run-time component and is smoothly integrated
into your development environment. You can run the translator to translate, compile,
and customize the code in a single step using the sglj front-end utility. The
translation process replaces embedded SQL statements with calls to the SQL]J run time,

Overview 1-1

Overview of SQLJ Components

which processes the SQL statements. In ISO standard SQL] this is typically, but not
necessarily, performed through calls to a JDBC driver. To access an Oracle database,
you would typically use an Oracle JDBC driver. When you run the SQL]J application,
the run time is started to handle the SQL operations.

The SQLJ translator is conceptually similar to other Oracle precompilers and enables
you to check SQL syntax, verify SQL operations against what is available in the
schema, and check the compatibility of Java types with corresponding database types.
In this way, you can catch errors during development rather than a user catching the
errors at run time. The translator checks the following:

= Syntax of the embedded SQL statements

= SQL constructs, against a specified database schema to ensure consistency within a
particular set of SQL entities (optional)

It verifies table names and column names, for example.

= Data types, to ensure that the data exchanged between Java and SQL have
compatible types and proper type conversions

The SQLJ methodology of embedding SQL statements directly in Java code is much
more convenient and concise than the JDBC methodology. In this way, SQL]J reduces
development and maintenance costs in Java programs that require database
connectivity.

Java programs can call PL/SQL stored procedures and anonymous blocks through
JDBC or SQLJ. In particular, SQL]J provides syntax for calling stored procedures and
functions from within a SQL]J statement and also supports embedded PL/SQL
anonymous blocks within a SQLJ statement.

Note: Using PL/SQL anonymous blocks within SQL]J statements
is one way to support dynamic SQL operations in a SQLJ
application. However, the Oracle SQL] implementation includes
extensions to support dynamic SQL directly.

Oracle-Specific Code Generation Versus ISO Standard Code Generation

The Oracle SQL] implementation provides the option of Oracle-specific code
generation, where Oracle JDBC calls are generated directly in the code. This is the
default behavior. In the case of Oracle-specific code generation, you must be aware of
the following:

» There are no profile files, and therefore, there is no customization step during
translation.

= Atrun time, SQL operations do not have to go through the SQL]J run time layer,
because JDBC calls, instead of the SQL]J run time calls, are directly generated in the
translated code.

Overview of SQLJ Components

This section introduces the main SQLJ components and the concept of SQL] profiles. It
covers the following topics:

s SQLJ Translator and SQL] Run Time
= SQL]J Profiles (ISO Standard Code)

Oracle Database SQLJ Developer’s Guide and Reference

Overview of SQLJ Components

Note: Profiles are for ISO code generation only.

SQLJ Translator and SQLJ Run Time

The Oracle SQL]J implementation consists of two major components:

SQL] translator: This component is a precompiler that you run after creating SQL]J
source code.

The translator, which is written in pure Java, supports a programming syntax that
enables you to embed SQL statements in SQL]J executable statements. SQL]
executable statements and SQL] declarations are preceded by the #sgl token and
can be interspersed with Java statements in a SQL]J source code file. SQL]J source
code file names must have the . sqlj extension. The following is a sample SQL]J
statement:

#sgl { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

The translator produces a . java file. It also produces one or more SQLJ profiles
for ISO standard SQLJ code generation. These profiles contain information about
the embedded SQL operations. SQL]J then automatically invokes a Java compiler
to produce . class files from the . java file.

You can invoke the translator using the sqlj command-line utility. On the
command line, specify the files that need to be translated and any desired SQLJ
option settings.

See Also: Chapter 8, "Translator Command Line and Options"

Note: By default, there is an Oracle-specific code generation
setting that results in translation directly into Oracle JDBC code. In
this case, no profiles are produced. Refer to "Oracle-Specific Code
Generation (No Profiles)" on page 3-28.

SQLJ run time: This component is also written in pure Java and is invoked
automatically each time you run a SQL]J application.

For ISO standard code generation, the SQL]J run time implements the desired
actions of the SQL operations by accessing the database using a JDBC driver. The
generic ISO SQLJ standard does not require that a SQL] run time use a JDBC
driver to access the database. However, the Oracle SQL]J implementation does
require a JDBC driver. In fact, it requires an Oracle JDBC driver if your application
is customized with the default Oracle customizer.

For Oracle-specific code generation, Oracle JDBC calls are generated directly into
the translated code and the SQL]J run time plays a much smaller role.

See Also: "SQL]J Run Time" on page 9-11

In addition to the translator and run time, there is a component known as the
customizer that plays a role if you use ISO standard code generation. A customizer
tailors SQLJ profiles for a particular database implementation and vendor-specific
features and data types. By default, for ISO standard code, the SQL]J front end invokes
an Oracle customizer to tailor your profiles for an Oracle Database instance and
Oracle-specific features and data types.

Overview 1-3

Overview of SQLJ Components

When you use the Oracle customizer during translation, your application will require
the SQL]J run time and an Oracle JDBC driver when it runs.

Note: From Oracle Database 10g release 1 (10.1), only Oracle JDBC
drivers are supported with SQL]J.

SQLJ Profiles (ISO Standard Code)

With ISO standard SQLJ code generation, SQL] profiles are serialized Java resources or
classes generated by the SQLJ translator, which contain details about the embedded
SQL statements. The translator creates these profiles. Then, depending on the
translator option settings, it either serializes the profiles and puts them into binary
resource files or puts them into . class files.

Note: By default, Oracle-specific code generation is used. In this
case, the translator generates Oracle JDBC calls directly, and details
of your embedded SQL statements are embodied in the JDBC calls.
There are no profiles. Refer to "Oracle-Specific Code Generation
(No Profiles)" on page 3-28

This section covers the following topics:
= Overview of Profiles

= Binary Portability

Overview of Profiles

SQLJ profiles are used in ISO standard code for implementing the embedded SQL
operations in SQL]J executable statements. Profiles contain information about the SQL
operations and the types and modes of data being accessed. A profile consists of a
collection of entries, where each entry maps to one SQL operation. Each entry fully
specifies the corresponding SQL operation, describing each of the parameters used in
processing this instruction.

For ISO code generation, SQL] generates a profile for each connection context class in
your application, where each connection context class corresponds to a particular set
of SQL entities you use in your database operations. There is one default connection
context class, and you can declare additional classes. The ISO SQL]J standard requires
that the profiles be of standard format and content. Therefore, for your application to
use vendor-specific extended features, your profiles must be customized. By default,
this occurs automatically, with your profiles being customized to use Oracle-specific
extended features.

Profile customization allows vendors to add value in the following ways:

= Vendors can support their own specific data types and SQL syntax. For example,
the Oracle customizer maps standard JDBC PreparedStatement method calls
in translated SQLJ code to OraclePreparedStatement method calls, which
provide support for Oracle type extensions.

= Vendors can improve performance through specific optimizations.

1-4 Oracle Database SQLJ Developer’s Guide and Reference

Overview of Oracle Extensions to the SQLJ Standard

Notes:

= By default, SQL]J profile file names have the . ser extension,
but this does not mean that all . ser files are profiles. Other
serialized objects can use this extension, and a SQL] program
unit can use serialized objects other than its profiles. Optionally,
profiles can be converted to . class files instead of . ser files.

= A SQLJ profile is not produced if there are no SQL]J executable
statements in the source code.

Binary Portability

SQL]J-generated profile files support binary portability. That is, you can port them as is
and use them with other kinds of databases or in other environments, if you have not
used vendor-specific data types or features. This is true for generated . class files as
well.

Overview of Oracle Extensions to the SQLJ Standard

The Oracle SQL] implementation supports the ISO SQL] specification. Because the ISO
SQLJ standard is a superset of the American National Standards Institute (ANSI) SQL]J
standard, using its features requires a Java Development Kit (JDK) 1.2.x or later
environment that complies with Java2 Platform, Enterprise Edition (J2EE). The SQLJ
translator accepts a broader range of SQL syntax than the ANSI SQL]J standard
specifies.

Note: Oracle SQL] implementation is supported with JDK 1.2.x,
1.3.x, and 1.4.x.

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension
beyond that. The Oracle SQL]J implementation supports the Oracle SQL dialect, which
is a superset of SQL92. If you need to create SQLJ programs that work with other
databases, then avoid using SQL syntax and SQL types that are not in the standard
and, therefore, may not be supported in other environments.

This section covers the following topics:
= SQLJ Type Extensions
= SQLJ Functionality Extensions

See Also: Chapter 5, "Type Support”, and Chapter 6, "Objects,
Collections, and OPAQUE Types" for information about SQLJ
extensions provided by Oracle Database

SQLJ Type Extensions

The Oracle SQLJ implementation supports the following Java types as extensions to
the SQLJ standard:

= Instances of oracle.sqgl. * classes as wrappers for SQL data.

See Also: "Support for JDBC 2.0 LOB Types and Oracle Type
Extensions" on page 5-20

Overview 1-5

Overview of Oracle Extensions to the SQLJ Standard

= Custom Java classes, typically produced by the JPublisher utility to correspond to
SQL objects, object references, and collections. For example, classes that implement
the oracle.sqgl.ORAData interface or the JDBC standard java.sqgl.SQLdata
interface.

Note: The SQLData interface is standard. Classes that implement it
are supported by JDBC drivers and databases of other vendors.

See Also: "Custom Java Classes" on page 6-4

s Stream instances: BinaryStream and CharacterStream, the latter of which
replaces the deprecated AsciiStream and UnicodeStream, used as output
parameters.

See Also: "Support for Streams" on page 5-9

» lterator and result set instances as input or output parameters. The SQL]J standard
specifies them only in result expressions or cast statements.

See Also: "Using Iterators and Result Sets as Host Variables" on
page 4-37 and "Using Iterators and Result Sets as Stored Function
Returns" on page 4-45

= Unicode character types: NString, NCHAR, NCLOB, and
NcharCharacterStream, the latter of which replaces the deprecated
NcharAsciiStreamand NcharUnicodeStream.

See Also: "SQLJ Extended Globalization Support" on page 9-18

Using any of these extensions requires Oracle-specific code generation or Oracle
customization during translation, as well as the Oracle SQLJ run time and an Oracle
JDBC driver when your application runs. Do not use these or other types if you want
to use your code in other environments. To ensure that your application is portable,
use the SQLJ -warn=portable flag.

See Also: See "Translator Command Line and Options" on page 8-1

SQLJ Functionality Extensions

The Oracle SQL]J implementation also supports the following extended functionality:
= Oracle-specific code generation

This generates JDBC code directly. No profiles are produced and much of the SQL]
run time functionality is bypassed during program execution.

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

s Dynamic SQL in SQL] statements
See Also: "Support for Dynamic SQL" on page 7-44

= Scrollable result set iterators with additional navigation methods, and FETCH
syntax from result set iterators and scrollable result set iterators

1-6 Oracle Database SQLJ Developer’s Guide and Reference

Basic Translation Steps and Run-Time Processing

See Also: "Scrollable Iterators" on page 7-30

= Optimization flags for column and parameter size definitions

See Also: "Column Definitions" on page 10-16, "Parameter Size
Definitions" on page 10-17, and "Options for Code Generation,
Optimizations, and CHAR Comparisons" on page 8-40

» Flags for modified translator behavior, such as for binding host expressions by
identifier or accounting for blank padding in CHAR comparisons for WHERE clauses

See Also: "Binding Host Expressions by Identifier
(-bind-by-identifier)" on page 8-55 and "CHAR Comparisons with
Blank Padding (-fixedchar)" on page 8-46

= SQLJ statement caching on connection contexts

See Also: "Statement Caching" on page 10-3

Basic Translation Steps and Run-Time Processing

SQLJ source code contains a mixture of standard Java source together with SQL]J class
declarations and SQL]J executable statements containing embedded SQL statements.
SQLJ source files have the . sglj file name extension. The file name must be a legal
Java identifier. If the source file declares a public class, then the file name must match
the name of this class. If the source file does not declare a public class, then the file
name should match the name of the first defined class.

This section covers the following topics:
s SQLJ Translation Steps
= Summary of Translator Input and Output

s SQLJ Run-Time Processing

SQLJ Translation Steps

After you have written your . sqlj file, you must run SQLJ to process the files. The
following example shows SQL]J being run in its simplest form with no command-line
options for the Foo . sql3j source file with the public class Foo:

% sqglj Foo.sqlj
This command runs a front-end script or utility depending on the platform. The script

or utility reads the command line, invokes a Java virtual machine (JVM), and passes
arguments to it. The JVM invokes the SQLJ translator and acts as a front end.

The following sequence of events occurs, presuming each step completes without
error:

1. The JVM invokes the SQL]J translator.

2. The translator parses the SQLJ and Java code in the . sql7j file, checking for
proper SQLJ syntax and looking for type mismatches between the declared SQL
data types and corresponding Java host variables. Host variables are Java local
variables that are used as input or output parameters in SQL operations.

See Also: "Java Host, Context, and Result Expressions" on page 4-12

Overview 1-7

Basic Translation Steps and Run-Time Processing

3. Depending on the SQLJ option settings, the translator invokes the online
semantics-checker, the offline parser, neither, or both. This is to verify syntax of
embedded SQL and PL/SQL statements and to check the use of database elements
in the code against an appropriate database schema, for online checking. Even
when neither is specified, some basic level of checking is performed.

When online checking is specified, SQL]J will connect to a specified database
schema to verify that the database supports all the database tables, stored
procedures, and SQL syntax that the application uses. It also verifies that the host
variable types in the SQL] application are compatible with data types of
corresponding database columns.

4. For Oracle-specific SQL]J code generation (-codegen=oracle, which is default),
SQL operations are converted directly into Oracle JDBC calls and no profiles are
produced.

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

For ISO standard code generation (-codegen=1iso), the translator processes the
SQLJ source code, converts SQL operations to SQL]J run-time calls, and generates
Java output code and one or more SQL]J profiles. A separate profile is generated
for each connection context class in the source code, where a different connection
context class is typically used for each interrelated set of SQL entities that is used
in the operations.

Generated Java code is put into a . java output file containing the following;:
= Any class definitions and Java code from the . sqlj source file

» Class definitions created as a result of the SQL]J iterator and connection context
declarations

See Also: "Overview of SQL]J Declarations" on page 4-1

= A class definition for a specialized class known as the profile-keys class that
SQLJ generates and uses in conjunction with the profiles (for ISO standard
SQLJ code generation only)

= Calls to Oracle JDBC drivers (for Oracle-specific code generation) or to the
SQLJ run time (for ISO standard code generation) to implement the actions of
the embedded SQL operations

Generated profiles contain information about all the embedded SQL statements in
the SQLJ source code, such as actions to take, data types being manipulated, and
tables being accessed. When the application is run, the SQL]J run time accesses the
profiles to retrieve the SQL operations and passes them to the JDBC driver.

By default, profiles are put into . ser serialized resource files, but SQL]J can
optionally convert the . ser files to . class files as part of the translation.

5. The JVM invokes the Java compiler, which is usually, but not necessarily, the
standard javac provided with the Sun Microsystems JDK.

6. The compiler compiles the Java source file generated in Step 4 and produces Java
.class files as appropriate. This will include a . class file for each class that is
defined, each of the SQLJ declarations, and the profile-keys class.

7. For ISO standard SQLJ code generation, the JVM invokes the Oracle customizer or
other specified customizer to customize the profiles generated in Step 4.

1-8 Oracle Database SQLJ Developer’s Guide and Reference

Basic Translation Steps and Run-Time Processing

See Also: ‘"Internal Translator Operations" on page 9-1

General SQLJ Notes
Consider the following when translating and running SQL]J applications:

s The preceding is a very generic example. It is also possible to specify:

- Existing . java files on the command line to be compiled and to be available
for type resolution as well

- Existing profiles to be customized
— Java Archive (JAR) files containing profiles to be customized

See Also: "Translator Command Line and Properties Files" on
page 8-1

= For Oracle-specific code generation, your application will require an Oracle JDBC
driver when it runs, even if your code does not use Oracle-specific features.

s For ISO code generation, SQL] generates profiles and the profile-keys class only if
your source code includes SQL]J executable statements.

= Also for ISO code, if you use the Oracle customizer during translation, then your
application will require the Oracle SQL]J run time and an Oracle JDBC driver when
it runs, even if your code does not use Oracle-specific features. You can avoid this
by specifying -profile=false when you translate, to bypass Oracle-specific
customization.

Summary of Translator Input and Output

This section summarizes what the SQLJ translator takes as input, what it produces as
output, and where it places its output. This section covers the following topics:

s Translator Input
s Translator Output

s Output File Locations

Note: This discussion mentions iterator class and connection
context class declarations. Iterators are similar to JDBC result sets
and connection contexts are used for database connections.

Translator Input

The SQLJ translator takes one or more . sqlj source files as input, which can be
specified on the command line. The name of the main . sglj file is based on the
public class it defines, if any, else on the first class it defines.

If the main . sglj file defines the MyClass class, then the source file name must be:
MyClass.sqlj

This must also be the file name if there are no public class definitions, but MyClass is
the first class defined. You must define each public class in separate . sglj files. When

you run SQLJ, you can also specify numerous SQL]J options on the command line or in
the properties files.

Overview 1-9

Basic Translation Steps and Run-Time Processing

See Also: '"Translator Command Line and Properties Files" on
page 8-1

Translator Output

The translation step produces a Java source file for each . sglj file in the application
and at least one application profile for ISO standard code generation, presuming the
source code uses SQL]J executable statements.

SQLJ generates Java source files and application profiles as follows:
» Java source files will be . java files with the same base names as the . sgl7 files.

For example, the translator produces MyClass . java corresponding to
MyClass.sqglj, which defines the MyClass class. The output . java file also
contains class definitions for any iterators or connection context classes declared in
the .sqglj file.

= The application profile files, if applicable, contain information about the SQL
operations of the SQLJ application. There will be one profile for each connection
class that is used in the application. The profiles will have names with the same
base name as the main . sglj file and the following extensions:

_SJProfilel.ser
_SJProfilel.ser
_SJProfile2.ser

For example, for MyClass . sglj the translator produces:

MyClass_SJProfile0.ser

The . ser file extension indicates that the profiles are serialized. The . ser files are
binary files.

Note: The -ser2class translator option instructs the translator
to generate profiles as . class files instead of . ser files. Other
than the file name extension, the naming is the same.

The compilation step compiles the Java source file into multiple class files. One
.class file is generated for each class defined in the . sqlj source file. Also, a
.class file is generated for a class known as the profile-keys class that the translator
generates and uses with the profiles to implement the SQL operations. Additional
.class files are produced if you declared any SQLJ iterators or connection contexts.
Also, separate . class files will be produced for any inner classes or anonymous
classes in the code.

See Also: "Overview of SQL]J Declarations" on page 4-1

For Oracle-specific code generation (the default), no profiles or profile-keys class are
produced.

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

The . class files are named as follows:

1-10 Oracle Database SQLJ Developer’s Guide and Reference

Basic Translation Steps and Run-Time Processing

n The class file for each class defined consists of the name of the class with the
.class extension. For example, the translator output file MyClass. java is
compiled into the MyClass.class class file.

= The profile-keys class that the translator generates is named according to the base
name of the main . sqglj file, plus the following;:

_SJProfileKeys

So, the class file has the following extension:
_SJProfileKeys.class
For example, for MyClass . sglj, the translator together with the compiler
produces:
MyClass_SJProfileKeys.class
= The translator names iterator classes and connection context classes according to

how you declare them. For example, if you declare an iterator MyIter, then the
compiler will generate a corresponding MyIter.class class file.

The customization step alters the profiles but produces no additional output.

Note: It is not necessary to reference SQL] profiles or the
profile-keys class directly. This is all handled automatically.

Output File Locations

By default, SQL]J places the generated . java files in the same directory as the . sglj
file. You can specify a different . java file location using the SQLJ -dir option.

By default, SQL]J places the generated . class and . ser files in the same directory as
the generated . java files. You can specify a different location for .class and .ser
files using the SQLJ -d option. This option setting is passed to the Java compiler so
that . class files and . ser files will be in the same location.

For both the -d and -dir option, you must specify a directory that already exists.

See Also: "Options for Output Files and Directories" on page 8-21

SQLJ Run-Time Processing

This section discusses run-time processing during program execution. It covers the
following topics:

» Processing for Oracle-Specific Generated Code

= Processing for ISO Standard Generated Code

Processing for Oracle-Specific Generated Code

When you translate with the default -codegen=oracle setting, your program will
perform the following at run time:

= Execute Oracle-specific application programming interfaces (APIs) that ensure
batching support and proper creation and closing of Oracle JDBC statements

= Direct calls to Oracle JDBC APIs for registering, passing, and retrieving
parameters and result sets

Overview 1-11

JDBC Versus SQLJ Sample Code

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

Processing for ISO Standard Generated Code

For ISO standard SQLJ applications, the SQLJ run time reads the profiles and creates
connected profiles, which incorporate database connections. Then the following occurs
each time the application must access the database:

1. SQLJ-generated application code uses methods in a SQLJ-generated profile-keys
class to access the connected profile and read the relevant SQL operations. There is
a mapping between SQL]J executable statements in the application and SQL
operations in the profile.

2. The SQL]J-generated application code calls the SQL] run time, which reads the SQL
operations from the profile.

3. The SQLJ run time calls the JDBC driver and passes the SQL operations to the
driver.

4. The SQLJ run time passes any input parameters to the JDBC driver.
5. The JDBC driver executes the SQL operations.

6. If any data is to be returned, then the database sends it to the JDBC driver, which
sends it to the SQLJ run time for use by your application.

Note: Passing input parameters can also be referred to as binding
input parameters or binding host expressions. The terms host
variables, host expressions, bind variables, and bind expressions
are all used to describe Java variables or expressions that are used
as input or output for SQL operations.

JDBC Versus SQLJ Sample Code

This section presents a side-by-side comparison of two versions of the same sample
code, where one version is written in JDBC and the other in SQL]J. The objective of this
section is to point out the differences in coding requirements between SQL]J and JDBC.
This section covers:

= JDBC Version of the Sample Code
= SQLJ Version of the Sample Code

Note: The particulars of SQL] statements and features used here are
described later in this manual, but this example is still useful here to
give you a general idea in comparing and contrasting SQL]J and JDBC.
You can look at it again when you are more familiar with SQLJ
concepts and features.

In the sample, two methods are defined: getEmployeeAddress (), which selects and
returns an employee’s address from a table based on the employee’s number, and
updateAddress (), which takes the retrieved address, calls a stored procedure, and
returns the updated address to the database.

In both versions of the sample code, the following assumptions are made:

1-12 Oracle Database SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code

s A SQL script has been run to create the schema in the database and populate the
tables. Both versions of the sample code refer to objects and tables created by this
script.

s The UPDATE_ADDRESS () PL/SQL stored function exists, and it updates a given
address.

s The Connection object (for JDBC) and default connection context (for SQL]) have
been created previously by the caller.

= Exceptions are handled by the caller.

= The value of the address argument, addr, passed to the updateAddress ()
method can be null.

Note: The JDBC and SQLJ versions of the sample code are only
partial samples and cannot run independently. There is no main ()
method in either.

JDBC Version of the Sample Code

Following is the JDBC version of the sample code, which defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database. Note that the TO DO items in the comment lines indicate where you might
want to add additional code to increase the usefulness of the code sample.

import java.sqgl.*;
import oracle.jdbc.*;

/**

This is what you have to do in JDBC

'k*/
public class SimpleDemoJDBC // line 7
{

//TO DO: make a main that calls this

public Address getEmployeeAddress(int empno, Connection conn)
throws SQLException // line 13
{
Address addr;
PreparedStatement pstmt = // line 16
conn.prepareStatement ("SELECT office_addr FROM employees" +
" WHERE empnumber = ?");
pstmt.setInt (1, empno);
OracleResultSet rs = (OracleResultSet)pstmt.executeQuery();
rs.next(); // line 21
//TO DO: what if false (result set contains no data)?
addr = (Address)rs.getORAData(l, Address.getORADataFactory());
//TO DO: what if additional rows?

rs.close(); // line 25
pstmt.close();
return addr; // line 27

}
public Address updateAddress (Address addr, Connection conn)
throws SQLException // line 30

{

OracleCallableStatement cstmt = (OracleCallableStatement)
conn.prepareCall ("{ ? = call UPDATE_ADDRESS(?) }"); //1line 34

Overview 1-13

JDBC Versus SQLJ Sample Code

cstmt.registerOutParameter (1, Address._SQL_TYPECODE, Address._SQL_NAME) ;
// line 36
if (addr == null) {
cstmt.setNull (2, Address._SQL_TYPECODE, Address._SQL_NAME) ;
} else {
cstmt.setORAData (2, addr);
}

cstmt.executeUpdate () ; // line 43
addr = (Address)cstmt.getORAData(l, Address.getORADataFactory());
cstmt.close(); // line 45

return addr;

Line 12

In the getEmployeeAddress () method, you must pass the Connection object
explicitly.

Lines 16-20

Prepare a statement that selects an employee’s address from the employees table,
based on the employee number. The employee number is represented by a marker
variable, which is set with the setInt () method. Note that because the prepared
statement does not recognize the INTO syntax, you must provide your own code to
populate the addr address variable. Because the prepared statement is returning a
custom object, cast the output to OracleResultSet.

Lines 21-23

Because the Oracle result set contains a custom object of type Address, use the
getORAData () method to retrieve it. The Address class can be created by JPublisher.
The getORAData () method requires a factory object that it can use to create
additional custom objects (additional Address objects in this case) while it retrieves
the data to populate them. Use the static factory method
Address.getORADataFactory () to materialize an Address factory object for the
getORAData () method to use. Because getORAData () returns a Datum, cast the
output to an Address object.

Note: The routine assumes a one-row result set. The TO DO items in
the comment lines indicate that you must write additional code for the
case where the result set contains either no rows or more than one
TOW.

Lines 25-27
Close the result set and prepared statement objects, and then return the addr variable.

Line 29

In the updateAddress () method, you must pass the Connection object and the
Address object explicitly. The updateAddress () method passes an Address object
to the database for update and then fetches it back. The actual updating of the address
is performed by the UPDATE_ADDRESS () stored function.

1-14 Oracle Database SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code

Line 33-43

Prepare an Oracle callable statement that takes an Address object and passes it to the
UPDATE_ADDRESS () stored procedure. To register an object as an output parameter,
you must know the SQL type code and SQL type name of the object.

Before passing the addr address object as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different setter methods. If addr is null, then the program calls
setNull (). If addr has a value, then the program calls setORAData ().

Line 44

Fetch the return result addr. Because the Oracle callable statement returns a custom
object of type Address, use the getORAData () method to retrieve it. The Address
class can be created by JPublisher. The getORAData () method requires you to use the
factory method Address.getORADataFactory to materialize an instance of an
Address object. Because getORAData () returns a Datum object, cast the output to an
Address object.

Lines 45, 46
Close the Oracle callable statement, and then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

s The getEmployeeAddress () and updateAddress () definitions must
explicitly include the connection object.

= Long SQL strings must be concatenated with the SQL concatenation character
(H+H)'

= You must explicitly manage resources. For example, close result set and statement
objects after using them.

= You must cast data types as needed.

= You must know the _SQL_TYPECODE and _SQL_NAME values of the factory object
and any objects that you are registering as output parameters.

= NULL value data must be explicitly processed.

= Host variables must be represented by parameter markers in callable and prepared
statements.

= If you want to reuse statement objects, for example, you want to repeatedly call
getEmployeeAddress () and updateAddress (), then you must code this
appropriately. The Oracle SQL]J and JDBC implementations both support
statement caching.

Maintaining JDBC Programs

JDBC programs are potentially expensive to maintain. For example, in the preceding
code sample, if you add another WHERE clause, then you must change the SELECT
string. If you append another host variable, then you must increment the index of the
other host variables by one. A simple change to one line in a JDBC program might
require changes in several other areas of the program.

Overview 1-15

JDBC Versus SQLJ Sample Code

SQLJ Version of the Sample Code

The SQLJ version of the sample code that defines methods to retrieve an employee’s
address from the database, update the address, and return it to the database is as
follows:

import java.sql.*;

/**
This is what you have to do in SQLJ
**/
public class SimpleDemoSQLJ // line 6

{
//TO DO: make a main that calls this

public Address getEmployeeAddress (int empno) // line 10
throws SQLException
{
Address addr; // line 13
#sgl { SELECT office_addr INTO :addr FROM employees
WHERE empnumber = :empno };
return addr;

}

// line 18
public Address updateAddress (Address addr)
throws SQLException
{
#sgl addr = { VALUES (UPDATE_ADDRESS (:addr)) }; // line 22

return addr;

}

Line 10

The getEmployeeAddress () method does not require an explicit Connection
object. SQLJ can use a default connection context instance, which should be initialized
somewhere earlier in the application.

Lines 13-15

The getEmployeeAddress () method retrieves an employee address according to
the employee number. Use standard SQLJ SELECT INTO syntax to select an
employee's address from the employee table if the employee number matches the one
(empno) passed in to getEmployeeAddress (). This requires a declaration of the
Address object (addr) that will receive the data. The empno and addr variables are
used as input host variables.

Line 16
The getEmployeeAddress () method returns the addr object.

Line 19
The updateAddress () method also uses the default connection context instance.

Lines 19-22

The address is passed to the updateAddress () method, which passes it to the
database. The database updates the address and passes it back. The actual updating of
the address is performed by the UPDATE_ADDRESS () stored function. Use standard
SQLJ function-call syntax to receive the addr address object returned by
UPDATE_ADDRESS ().

1-16 Oracle Database SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

Line 23
The updateAddress () method returns the addr object.

Specific Features of the SQLJ Version of the Code
Note the following features of the SQL]J version of the sample code:

An explicit connection is not required. SQL]J can use a default connection context
that has been initialized previously in the application.

No da tatype casting is required.
SQL]J does not require knowledge of _SQL_TYPECODE, _SQL_NAME, or factories.
NULL value data is processed implicitly.

No explicit code for resource management (for example, closing statements or
results sets) is required.

SQLJ embeds host variables, in contrast to JDBC, which uses parameter markers.
String concatenation for long SQL statements is not required.
You do not have to register output parameters.

SQLJ syntax is simpler. For example, SELECT INTO statements are supported and
ODBC-style escapes are not used.

You do not have to implement your own statement cache. By default, SQLJ will
automatically cache #sqgl statements. This results in improved performance, for
example, if you repeatedly call getEmployeeAddress () and
updateAddress ().

Alternative Deployment Scenarios

Although this manual mainly discusses writing for client-side SQL]J applications, you
may find it useful to run SQL]J code in the following scenarios:

From an applet

In the server (optionally running the SQLJ translator in the server as well)

This section covers the following topics:

Running SQLJ in Applets
Introduction to SQLJ in the Server

Running SQLJ in Applets

Because the SQLJ run time is pure Java, you can use SQL] source code in applets as
well as applications. However, there are a few considerations.

See Also: Oracle Database [DBC Developer’s Guide and Reference for
applet issues that apply to Oracle JDBC drivers.

This section covers the following topics:

General Development and Deployment Considerations
General End User Considerations

Java Environment and the Java Plug-In

Overview 1-17

Alternative Deployment Scenarios

General Development and Deployment Considerations
The following general considerations apply to the use of SQL]J in applets:

You must package all the SQL]J run time packages with your applet. The packages
are:

sglj.runtime
sqglj.runtime.ref
sqglj.runtime.profile
sglj.runtime.profile.ref
sglj.runtime.error

Also package the following if you used Oracle customization:

oracle.sqglj.runtime
oracle.sqglj.runtime.error

These packages are included with your Oracle installation in one of several run
time libraries in the ORACLE_HOME/11ib directory.

See Also: "Requirements for Using the Oracle SQL]
Implementation" on page 2-2

You must specify a pure Java JDBC driver, such as the Oracle JDBC Thin driver, for
your database connection.

You must explicitly specify a connection context instance for each SQL]J executable
statement in an applet. This is a requirement because you could conceivably run
two SQLJ applets in a single browser and, thus, in the same JVM.

See Also: "Connection Considerations" on page 3-4

The default translator setting -~codegen=oracle generates Oracle-specific code.
This will eliminate the use of Java reflection at run time and, thus, increase
portability across different browser environments.

See Also: "Code Generation (-codegen)"” on page 8-41 and
"Oracle-Specific Code Generation (No Profiles)" on page 3-28

General End User Considerations

When end users run your SQL]J applet, classes in their CLASSPATH may conflict with
classes that are downloaded with the applet. Therefore, Oracle recommends that end
users clear their CLASSPATH before running the applet.

Java Environment and the Java Plug-In

The following are some additional considerations regarding the Java environment and
use of Oracle-specific features:

SQLJ requires the run-time environment of JDK 1.2 or later versions. Users cannot
run SQLJ applets in browsers using JDK 1.0.x or JDK 1.1.x without a plug-in. One
option is to use a Java plug-in offered by Sun Microsystems. For information, refer
to the following;:

http://java.sun.com/products/plugin/

Some browsers, such as Netscape Navigator 4.x, do not support resource files with
a . ser extension, which is the extension used by the SQL] serialized object files

1-18 Oracle Database SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

that are used for profiles (relevant for ISO standard code only). However, the Sun
Microsystems Java plug-in supports . ser files.

Alternatively, if you do not want to use the plug-in, then the Oracle SQLJ
implementation offers the -ser2class option to convert . ser files to .class
files during translation.

See Also: "Conversion of .ser File to .class File (-ser2class)" on
page 8-53

Note: This consideration does not apply to the default
Oracle-specific code generation, where no profiles are produced.

Applets using Oracle-specific features require the Oracle SQL] run time to work.
The Oracle SQL]J run time consists of the classes in the SQL]J run time library file
under oracle.sqglj. *. The Oracle SQLJ runtime. jar library requires the Java
Reflection API, java.lang.reflect.*. Most browsers do not support the
Reflection API or impose security restrictions, but the Sun Microsystems Java
plug-in provides support for the Reflection API.

Note: The term "Oracle-specific features” refers to the use of
Oracle type extensions (discussed in Chapter 5, "Type Support")
and the use of SQL] features that require Oracle-specific code
generation or, for ISO code generation, require your application to
be customized to work against an Oracle Database instance. (For
example, this is true of the SET statement, discussed in Chapter 4,
"Basic Language Features".)

With ISO standard SQL]J code generation, the following SQL]J language features
always require the Java Reflection API, regardless of the version of the SQLJ run
time you are using;:

— The CAST statement

- REF CURSOR parameters or REF CURSOR columns being retrieved from the
database as instances of a SQLJ iterator

- Retrieval of java.sgl.Ref, Struct, Array, Blob, or Clob objects

— Retrieval of SQL objects as instances of Java classes implementing the
oracle.sqgl.ORAData or java.sqgl.SQLData interfaces

Notes:

= An exception to the preceding is if you use SQL]J in a mode that
is fully compatible with ISO. That is, if you use SQL]J in an
environment that complies with J2EE and you translate and run
your program with the SQLJ runtimel2ee. jar library, and
you employ connection context type maps as specified by ISO.
In this case, instances of java.sqgl.Ref, Struct, Array,
Blob, Clob, and SQLData are being retrieved without the use
of reflection.

= If you use Oracle-specific code generation, then you will
eliminate the use of reflection in all of the instances listed.

Overview 1-19

Alternative Deployment Scenarios

The preceding issues can be summarized as follows, focusing on users with Internet
Explorer and Netscape browsers:

To be able to use Oracle-specific features, distribute your applet with the
appropriate SQLJ and JDBC libraries. For a browser that includes JDK 1.2.x or
supports a JDK 1.2.x plug-in, use the SQL] runtimel2.jar and JDBC
classesl2. jar libraries available with Oracle Database 11g.

The SQLJ and JDBC versions should match. For example, to use the SQLJ 9.0.0 run
time, you must have an Oracle 9.0.0 or earlier JDBC driver.

See Also: "Requirements for Using the Oracle SQL]
Implementation” on page 2-2

If you use object types, JDBC 2.0 types, REF CURSORSs, or the CAST statement in
your SQLJ statements, then you must adhere to your choice of the following:
— Use the default -codegen=oracle setting when you translate your applet.

- Ensure that the browser in which you run supports JDK 1.2 or later and
permits reflection.

- Run your applet through a browser Java plug-in.

Introduction to SQLJ in the Server

In addition to its use in client applications, SQL]J code can run within a target Oracle
database in stored procedures, stored functions, or triggers. Server-side access occurs
through an Oracle JDBC driver that runs inside the server itself. Additionally, Oracle
Database 11g (and preceding versions) has an embedded SQLJ translator so that SQLJ
source files for server-side use can optionally be translated directly in the server.

The two main areas to consider are the following:

Creating SQL]J code for use within the server

Coding a SQL]J application for use within the target Oracle database is similar to
coding for client-side use. The issues that exist are due to general JDBC
characteristics, as opposed to SQLJ-specific characteristics. The main differences
involve connections:

- You have only one connection.
— The connection is to the database in which the code is running.

— The connection is implicit (does not have to be explicitly initialized, unlike on
a client).

— The connection cannot be closed. Any attempt to close it will be ignored.

Additionally, the JDBC server-side driver used for connections within the server
does not support auto-commit mode.

Note: There is also a server-side Thin driver for connecting to one
server from code that runs in another. This case is effectively the
same as using a Thin driver from a client and is coded in the same
way. Refer "Overview of the Oracle JDBC Drivers" on page 3-1 for
further information.

Translating and loading SQL]J code for server-side use

1-20 Oracle Database SQLJ Developer’s Guide and Reference

Alternative Development Scenarios

You can translate and compile your code either on a client or in the server. If you
do this on a client, then you can load the class and resource files into the server
from your client, either by pushing them from the client using the Oracle
loadjava utility or pulling them in from the server using SQL commands.

Alternatively, you can translate and load in one step using the embedded
server-side SQL]J translator. If you load a SQL]J source file instead of class or
resource files, then translation and compilation are done automatically. In general,
loadjava or SQL commands can be used for class and resource files or for source
files. From a user perspective, . sqglj files are treated the same as . java files,
with translation taking place implicitly.

See Also: "Loading SQL]J Source Code into the Server" on page 11-11
for information about using the embedded server-side translator

Note: The server-side translator does not support the SQL]J
-codegen option and generates Oracle-specific code. To use ISO
standard code in the server, you must translate on a client and load
the individual components into the server. Also note restrictions on
interoperability when running code generated with different
settings. For more information, refer to "Translating SQL]J Source on
a Client and Loading Components" on page 11-5 and
"Oracle-Specific Code Generation (No Profiles)" on page 3-28.

Alternative Development Scenarios

The discussion in this book assumes that you are coding manually on a UNIX
environment for English-language deployment. However, you can use SQL]J on other
platforms and with integrated development environments (IDEs). There is also
globalization support for deployment to other languages. This section covers the
following topics:

= SQLJ Globalization Support
= SQLJ in Oracle JDeveloper 10g and Other IDEs

s Windows Considerations

SQLJ Globalization Support

Support for native languages and character encodings by the Oracle SQL]J
implementation is based on Java built-in globalization support capabilities.

The standard user.language and file.encoding properties of the JVM
determine appropriate language and encoding for translator and run-time messages.
The SQLJ -encoding option determines encoding for interpreting and generating
source files during translation.

See Also: "Globalization Support in the Translator and Run Time"
on page 9-13

SQLJ in Oracle JDeveloper 10g and Other IDEs

The Oracle SQLJ implementation includes a programmatic API so that it can be
embedded in IDEs, such as Oracle JDeveloper 10g. The IDE takes on a role similar to
that of the front-end sqlj script, invoking the translator, semantics-checker, compiler,
and customizer (as applicable).

Overview 1-21

Alternative Development Scenarios

JDeveloper is a Windows-based visual development environment for Java
programming. The JDeveloper Suite enables developers to build multitier, scalable
Internet applications using Java across the Oracle Internet Platform. The core product
of the suite, the JDeveloper IDE, excels in creating, debugging, and deploying
component-based applications.

The Oracle JDBC OCI and Thin drivers are included with JDeveloper. The compilation
functionality of JDeveloper includes an integrated SQLJ translator so that your SQLJ
application is translated automatically as it is compiled.

Information about JDeveloper is available at the following URL:

http://www.oracle.com/technology/products/jdev/index.html

Windows Considerations

Note the following if you are using a Microsoft Windows environment instead of a
UNIX environment:

This manual uses UNIX syntax. Use platform-specific file names and directory
separators, such as "\" on Microsoft Windows, that are appropriate for your
platform, because your JVM expects file names and paths in the platform-specific
format. This is true even if you are using a shell, such as ksh, that permits a
different file name syntax.

For UNIX, the Oracle SQL] implementation provides a front-end script, sqlj, that
you use to invoke the SQLJ translator. On Microsoft Windows, Oracle instead
provides an executable file, sqlJj . exe. Using a script is not feasible on Microsoft
Windows because . bat files on these platforms do not support embedded equals
signs (=) in arguments, string operations on arguments, or wildcard characters in
file name arguments.

How to set environment variables is specific to the operating system. There may
also be OS-specific restrictions. In Windows 95, use the Environment tab in the
System control panel. Additionally, because Windows 95 does not support the "="
character in variable settings, SQLJ supports the use of "#" instead of "=" in setting
SQLJ_OPTIONS, an environment variable that SQL]J can use for option settings.
Consult your operating system documentation regarding settings and syntax for

environment variables, and be aware of any size limitations.

As with any operating system and environment you use, be aware of specific
limitations. In particular, the complete, expanded SQL] command line must not
exceed the maximum command-line size, which is 250 characters for Windows 95
and 4000 characters for Windows NT. Consult your operating system
documentation.

Refer to the release notes for Windows for additional information.

1-22 Oracle Database SQLJ Developer’s Guide and Reference

2

Getting Started

This chapter guides you through the basics of testing your Oracle SQL]J installation
and configuration and running a simple application.

This chapter discusses the following topics:

Assumptions and Requirements
Checking the Installation and Configuration

Testing the Setup

Assumptions and Requirements

This section discusses basic assumptions about your environment and requirements of
your system so that you can run SQLJ, covering the following topics:

Assumptions About Your Environment

Requirements for Using the Oracle SQLJ Implementation
SQL]J Environment: Key Scenarios and Guidelines
Environment Considerations

SQL]J Backward Compatibility

Assumptions About Your Environment

The following assumptions are made about the system on which you will be running
the Oracle SQLJ implementation:

You have a standard Java environment that is operational on your system. This
would typically be using a Sun Microsystems Java Development Kit (JDK), but
other implementations of Java will work. Ensure that you can run Java (typically
java) and the Java compiler (typically javac).

To translate and run SQLJ applications on a Sun JDK, you must use JDK 1.2.x,
1.3.x, or 1.4.x. You must also choose an appropriate JDBC driver. There are Oracle
JDBC Thin and OCI driver releases that work with each supported JDK version.

See Also: "SQL]J Environment: Key Scenarios and Guidelines" on
page 2-3

Getting Started 2-1

Assumptions and Requirements

Note: A Java run-time environment (JRE), such as the one
installed with Oracle Database 11g, is not by itself sufficient for
translating SQL]J programs. However, a JRE is sufficient for running
SQLJ programs that have already been translated and compiled.

You can already run JDBC applications in your environment.

If you are using Oracle Database and Oracle JDBC drivers, then you should
complete the steps in Chapter 2, "Getting Started", of the Oracle Database JDBC
Developer’s Guide and Reference.You can also refer to Chapter 1, "Introducing JDBC",
of that document for information about the Oracle JDBC drivers and how to
decide which is appropriate for your situation.

Requirements for Using the Oracle SQLJ Implementation

The following are required to use the Oracle SQL]J implementation:

A JDBC driver implementing the standard java.sqgl JDBC interfaces
The Oracle SQL] product works with any standard JDBC driver.

A database system that is accessible using your JDBC driver

Class files for the SQLJ translator

Translator-related classes are available in the following file:
ORACLE_HOME/sglj/lib/translator.jar

Class files for the SQL]J run time.

Several SQL]J run time versions are available. You must select a run time version
that is compatible with your Java environment and JDBC driver (these are all in
ORACLE_HOME/sqlj/1ib):

— runtimel2.jar: For use with Oracle9i or Oracle10g JDBC drivers under JDK
1.2.x, 1.3.x, or 1.4.x, providing full ISO SQL]J functionality

- runtimel2ee.jar: For use with Oracle9i or Oracle10g JDBC drivers in a
Java2 Platform, Enterprise Edition (J2EE) environment that includes JDK 1.2.x,
1.3.x, or 1.4.x, providing full ISO SQLJ functionality

— runtime. jar: For use with older Oracle JDBC drivers (intended for Oracle8i
release 8.1.7)

2-2 Oracle Database SQLJ Developer’'s Guide and Reference

Assumptions and Requirements

Notes: Also be aware of the following:

SQL] installations with Oracle9i Application Server provide
only the runtimel2ee. jar file for JDK 1.2.x, 1.3.x, or 1.4.x
environments. The runtimel2. jar file is not included.

The runtime. jar library provides flexibility across different
Java environments and Oracle JDBC implementations, but does
not support all ISO SQLJ functionality.

For ISO SQLJ-compliant support for JDBC 2.0 types, such as
java.sqgl.Ref, Clob, Blob, Struct, and SQLData, use the
runtimel2.jar or runtimel2ee. jar library with JDK
1.2.x, 1.3.x, or 1.4.x and an Oracle9i or Oracle10g JDBC driver.

If you will be running only SQL]J applications that have already
been translated, compiled, and customized, then you will not
need the translator. jar file.

SQLJ Environment: Key Scenarios and Guidelines

To ensure that you have a fully working environment, you must consider several
aspects of your environment: SQL] and its code generation mode, JDBC, and the JDK.
This section first discusses the two main Oracle scenarios of supported combinations,
and then discusses some important general guidelines.

Note: Code generation is determined by the SQL] -codegen
option. Refer to "Code Generation (-codegen)" on page 8-41 for
more information.

Scenario 1: Oracle-Specific Code
The following is a typical environment setup for Oracle-specific code generation:

SQLJ code generation: -codegen=oracle (default)

SQL] translation library: translator.jar

SQLJ run time library: runtimel2. jar or runtimel2ee.jar
JDBC drivers: Oracle9i release 1 (9.0.1) or later
JDK version: 1.2.x, 1.3.x, or 1.4.x

Notes:

In this case, the SQL]J generic runtime. jar library is not an
option.

If you are running against different JDBC versions, then
translate against the earlier version.

Scenario 2: ISO Standard Code
The following is a typical environment setup for ISO standard code generation:

SQLJ code generation: -codegen=iso

SQL]J translation library: translator.jar

Getting Started 2-3

Assumptions and Requirements

s SQLJ run time library: runtimel2. jar or runtimel2ee. jar with JDK 1.2.x or
later and Oracle9i Database release 1 (9.0.1) or later JDBC drivers

s JDBC drivers: Any Oracle JDBC release (appropriate for SQL]J run time library as
noted in the preceding point)

s JDKversion: 1.2.x, 1.3.x, or 1.4.x

Environment Scenarios: Key Guidelines

The following are the important guidelines and considerations regarding your
environment for running the Oracle SQLJ implementation:

= In general, use the same versions of the SQL]J library, JDBC library, and JDK in
translating and compiling all components of your application.

= Be aware of the following cross-compatibility considerations:

- If you want to run against different Oracle JDBC driver releases, then translate
against the earlier release. Generated code is optimized toward the JDBC
driver in the CLASSPATH during translation.

- For cross-compatibility, avoid using declared connection context classes. If you
use JPublisher, then use the default settings for the -compatible and
-context options.

See Also: Oracle Database JPublisher User’s Guide for information
about these options.

- For maximum cross-compatibility, you can use the generic runtime.jar
library. However, this library has disadvantages, such as not supporting the
oracle. jdbc.OracleXxX interfaces. This causes problems in the middle
tier. Note that SQLJ in the Oracle9i Application Server middle tier requires
release 2 (9.0.2) or later version of Oracle Application Server.

See Also: "Environment Considerations" on page 2-4

Environment Considerations

This section discusses the key environmental issue and limitations. The following list
notes environmental issues and limitations:

= With the default -codegen=oracle setting, you cannot use the generic
runtime. jar library.

= You can run the application against a JDK version that is at least as high as the
version you translated the code under. If you translate your code under JDK 1.2.x,
then you can run the application either under JDK 1.2.x or 1.3.x or 1.4.x.

Note: The runtime. jar library is intended mainly for backward
compatibility. It does not support Oracle-specific features.

SQLJ Backward Compatibility

You must keep in mind the following points regarding backward compatibility of the
Oracle SQL]J implementation:

» Code generated with an earlier release of the SQL]J translator can continue to run
and compile against current run time libraries. However, this is subject to the

2-4 Oracle Database SQLJ Developer’'s Guide and Reference

Checking the Installation and Configuration

cross-compatibility limitations discussed in "Environment Considerations" on
page 2-4.
Oracle-specific translator output, that is, code generated with the default

-codegen=oracle setting, must be created and executed using the
runtimel2.jar or runtimel2ee. jar library. In addition:

— Such code will be executable under future Oracle JDBC and SQL]J
implementations.

— Such code, however, will not be executable under earlier releases of Oracle
JDBC drivers and the Oracle SQL]J run time. In these circumstances, you will
have to retranslate the code.

Also remember that Oracle-specific code is not portable.

ISO standard translator output, that is, code generated with the -codegen=iso
setting, can be created and executed against an earlier Oracle JDBC
implementation using the current runtime. jar library.

Checking the Installation and Configuration

After you have verified that the preceding assumptions and requirements are satisfied,
you must check your SQLJ installation. You must:

Check for Availability of SQLJ and Demo Applications
Check for Installed Directories and Files

Set the Path and Classpath

Verify Installation of the sqljutl Package

Check for Availability of SQLJ and Demo Applications

Following are the release-specific notes regarding availability of SQL] and its demo
applications:

SQLJ and its demo applications are available from the Oracle Technology Network
(OTN) at the following location:

http://www.oracle.com/technology/sample_code/tech/java/sqglj_J
dbc/sqglj.html

For Oracle Database 11g, SQL]J and its demo applications are included with the
installation.

For Oracle9i Database release 2 (9.2), SQLJ and its demo applications are included
if you do a full installation or if you otherwise install HTTPClient.

Note: SQL]J installations with Oracle9: Application Server provide
only the runtimel2. jar file for JDK 1.2.x or later environments.
The runtime. jar file is not included.

Check for Installed Directories and Files

Verify that the following directories have been installed and are populated:

Getting Started 2-5

Checking the Installation and Configuration

Directories for JDBC

If you are using one of the Oracle JDBC drivers, refer to the Oracle Database JDBC
Developer’s Guide and Reference for information about JDBC files that should be
installed on your system.

Directories for SQLJ

Installing the Oracle Database 11g Java environment will include, among other things,
installing a sqlj directory under your ORACLE_HOME directory. The sglj directory
contains the following subdirectories:

= demo (demo applications, including some referenced in this chapter)

s doc

s 1lib(.jar files containing class files for SQLJ)

Check whether all these directories have been created and populated, especially 1ib.
The structure is similar if you download SQL]J from the OTN:

http://www.oracle.com/technology/software/tech/java/sglj_jdbc/in
dex.html

The ORACLE_HOME/bin directory contains utilities for all Java product areas,
including the SQL]J and JPublisher executable files.

Set the Path and Classpath

Ensure that the PATH and CLASSPATH environment variables have the necessary
settings for the Oracle SQLJ implementation and the Oracle JDBC implementation, if
applicable.

PATH and CLASSPATH for JDBC

If you are using one of the Oracle JDBC drivers, then you will need the JDBC library
that is appropriate for your environment.

Classes for JDK 1.2.x or later are in classes12. jar. Classes for JDK 1.4.x specifically
are in ojdbc14 . jar. Presuming you use a Sun Microsystems JDK, ensure that the
appropriate library file name is in your classpath setting. There might also be
alternative JDBC driver libraries available, such as classes12_g. jar, which enables
driver debugging information to be printed.

For more information about libraries and required path and classpath settings for the
Oracle JDBC implementation, refer to the Oracle Database JDBC Developer’s Guide and
Reference.

Path and Classpath for SQLJ

Set the PATH and CLASSPATH environment variables as follows for the Oracle SQLJ
implementation:

s Setting PATH

To run the sqglj script, which invokes the SQL]J translator, without having to fully
specify its path, verify that the PATH environment variable has been updated to
include the following:

ORACLE_HOME/bin

Use backslash (\) for Microsoft Windows. Replace ORACLE_HOME with your actual
Oracle home directory.

2-6 Oracle Database SQLJ Developer’'s Guide and Reference

Testing the Setup

» Setting CLASSPATH

Update the CLASSPATH environment variable to include the current directory as
well as the following:

ORACLE_HOME/sqlj/lib/translator.jar
Use backslash (\) for Microsoft Windows. Replace ORACLE_HOME with your actual
Oracle home directory.

In addition, you must include one of the following run time libraries in the
CLASSPATH:

ORACLE_HOME/sqlj/lib/runtimel2.jar
ORACLE_HOME/sqlj/lib/runtimel2ee.jar
ORACLE_HOME/sqlj/lib/runtime.jar

See Also: "Requirements for Using the Oracle SQL]
Implementation" on page 2-2

Note: You will not be able to run the SQL]J translator if you do not
add a run time library. You must specify a run time library as well
as the translator library in the CLASSPATH.

To see if SQLJ is installed correctly, and to see the version
information for SQLJ, JDBC, and Java, run the following command:

o)

% sglj -version-long

Verify Installation of the sqljutl Package

The sgljutl package is required for online checking of stored procedures and
functions in an Oracle Database instance. Beginning with Oracle8i Database release
8.1.5, it is installed automatically under the SYS schema during installation of the
server-side Java virtual machine (JVM) for a Java-enabled database. If your database is
not Java-enabled, then you will have to manually install this package.

If you want to verify the installation of sqljut1l, then issue the following SQL
command from SQL*Plus:

describe sys.sgljutl

This should result in a brief description of the package.

If you get a message indicating that the package cannot be found, or if you want to
install an updated version of the package, then you can install it by using SQL*Plus to
run the sqljutl. sql script (or sqljutl8.sql for Oracle8i Database), which is
located at:

ORACLE_HOME/sqlj/1ib/sqljutl.sql

Testing the Setup

You can test your database, JDBC, and SQL] setup using demo applications defined in
the following source files:

m TestInstallCreateTable.java

Getting Started 2-7

Testing the Setup

m TestInstallJDBC.java
m TestInstallSQLJ.sqlj
m TestInstallSQLJChecker.sglj

There is also a Java properties file, connect . properties, that helps you set up your
database connection. You must edit this file to set appropriate user, password, and
URL values.

The demo applications discussed here are provided with your SQLJ installation in the
demo directory:

ORACLE_HOME/sqlj/demo

You may have to edit some of the source files and translate and compile them, as
appropriate. The demo applications provided with the Oracle SQL] implementation
refer to tables on an Oracle Database account with user name scott and password
tiger. Most Oracle Database installations have this account. You can substitute other
values for scott and tiger if desired.

Note: Running the demo applications requires that the demo
directory be the current directory, and that the current directory
(".") should be specified in the CLASSPATH.

This section covers the following topics:

= Set Up the Run Time Connection

» Create a Table to Verify the Database

» Verify the JDBC Driver

s Verify the SQL]J Translator and Run Time

s Verify the SQL]J Translator Connection to the Database

See Also: "Check for Availability of SQLJ and Demo Applications”
on page 2-5

Set Up the Run Time Connection

This section describes how to update the connect .properties file to configure
your Oracle connection for run time. The file is in the demo directory and looks
something like the following:

Note: In the Oracle Database 11g JDBC implementation, database
URL connect strings using SIDs are deprecated. Following is an
example, where orcl is the SID:

jdbc:oracle:thin:@localhost:1521:0rcl

This would now generate a warning, but not a fatal error. Instead,
you are encouraged to use database service names, such as
myservice in the following example:

jdbc:oracle:thin:@localhost:1521/myservice

Refer to the Oracle Database [DBC Developer’s Guide and Reference for
information about database service names.

2-8 Oracle Database SQLJ Developer’'s Guide and Reference

Testing the Setup

Users should uncomment one of the following URLs or add their own.
(If using Thin, edit as appropriate.)
#sqglj.url=jdbc:oracle:thin:@localhost:1521/myservice
#sqglj.url=jdbc:oracle:oci:@

#

User name and password here

sqglj.user=scott

sqlj.password=tiger

Connecting with an Oracle JDBC Driver

With Oracle9i Database or later versions, use oc1i in the connect string for the Oracle
JDBC OCI driver in any new code. For backward compatibility, however, oci8 is still
accepted. Therefore, you do not have to change existing code.

If you are using the JDBC Thin driver, then uncomment the thin URL line in
connect.properties and edit it as appropriate for your Oracle connection. Use the
same URL that was specified when your JDBC driver was set up.

Create a Table to Verify the Database

The following tests assume a table called SALES. Compile and run
TestInstallCreateTable as follows:

o)
o

avac TestInstallCreateTable.java

J
java TestInstallCreateTable

oe

This will create the table for you if the database and the JDBC driver are working and
the connection is set up properly in the connect .properties file.

Note: If you already have a table called SALES in your schema
and do not want it altered, edit

TestInstallCreateTable. java to change the table name.
Otherwise, your original table will be dropped and replaced.

If you do not want to use TestInstallCreateTable, then you can create the
SALES table using the following SQL statement:

CREATE TABLE SALES (
ITEM_NUMBER NUMBER,
ITEM _NAME CHAR(30),
SALES_DATE DATE,
COST NUMBER,
SALES_REP_NUMBER NUMBER,
SALES_REP_NAME CHAR(20));

Verify the JDBC Driver

If you want to further test the Oracle JDBC driver, then use the TestInstallJDBC
demo. Verify that your connection is set up properly in connect .properties. Then,
compile and run TestInstallJDBC, as follows:

% javac TestInstallJDBC.java
% java TestInstallJDBC

The program should print:

Getting Started 2-9

Testing the Setup

Hello, JDBC!

Verify the SQLJ Translator and Run Time

Now translate and run the TestInstallSQLJ demo, a SQLJ application that has
functionality similar to that of TestInstallJDBC. Use the following command to
translate the source:

% sqlj TestInstallSQLJ.sqglj

Note that this command also compiles the application.

On a UNIX environment, the sqlj script is in ORACLE_HOME/bin, which should
already be in the PATH. On Windows, use the sqlj . exe executable in the bin
directory. The SQL] translator. jar file has the class files for the SQL]J translator
and run time. It is located in ORACLE_HOME/sqglj/1ib and should already be in the
CLASSPATH.

See Also: "Set the Path and Classpath" on page 2-6

Now run the application as follows:

% java TestInstallSQLJ

The program should print:

Hello, SQLJ!

Verify the SQLJ Translator Connection to the Database

If the SQLJ translator is able to connect to a database, then it can provide online
semantics-checking of your SQL operations during translation. The SQL]J translator is
written in Java and uses JDBC to get information it needs from a database connection
that you specify. You provide the connection parameters for online semantics-checking
using the sglj script command line or using a SQL]J properties file, which is
sqlj.properties by default.

While still in the demo directory, edit the sglj .properties file and update,
comment, or uncomment the sgqlj.password, sqlj.url, and sqlj.driver lines,
as appropriate, to reflect your database connection information. For assistance, refer to
the comments in the sqlj .properties file.

Following is an example of what the appropriate driver, URL, and password settings
might be if you are using the Oracle JDBC OCI driver.

sqlj.url=jdbc:oracle:oci:@
sqglj.driver=oracle.jdbc.OracleDriver
sqlj.password=tiger

Online semantics-checking is enabled as soon as you specify a user name for the
translation-time connection. You can specify the user name either by uncommenting
the sqlj.user line in the sqlj.properties file or by using the -user
command-line option. The user, password, url, and driver options all can be set
either on the command line or in the properties file.

See Also: "Connection Options" on page 8-25

2-10 Oracle Database SQLJ Developer’'s Guide and Reference

Testing the Setup

You can test online semantics-checking by translating the
TestInstallSQLJChecker.sqglj file located in the demo directory, as follows (or
using another user name, if appropriate):

% sqglj -user=scott TestInstallSQLJChecker.sqglj
This should produce the following error message if you are using one of the Oracle
JDBC drivers:

TestInstallSQLJChecker.sglj:41: Warning: Unable to check SQL query. Error returned
by database is: ORA-00904: invalid column name

Edit TestInstallSQLJChecker.sqglj to fix the error on line 41. The column name
should be ITEM_NAME instead of ITEM_NAMAE. Once you make this change, you can
translate and run the application without error using the following commands:

% sqlj -user=scott TestInstallSQLJChecker.sqglj
% java TestInstallSQLJChecker

If everything works, then the following line is displayed:

Hello, SQLJ Checker!

Getting Started 2-11

Testing the Setup

2-12 Oracle Database SQLJ Developer’'s Guide and Reference

3

Key Programming Considerations

This chapter discusses key issues to consider before developing and running your
SQLJ application, and also provides a summary and sample applications. The
following topics are discussed:

Selection of the JDBC Driver

Connection Considerations

NULL-Handling

Exception-Handling Basics

Basic Transaction Control

Summary: First Steps in SQL]J Code
Oracle-Specific Code Generation (No Profiles)
Requirements and Restrictions for Naming

Considerations for SQLJ in the Middle Tier

Selection of the JDBC Driver

You must consider which Java Database Connectivity (JDBC) driver will be
appropriate for your situation and whether it may be advantageous to use different
drivers for translation and run time. You must choose or register the appropriate
driver class for each and then specify the driver in your connection URL.

Note: Your application will require an Oracle JDBC driver if you
use Oracle-specific code generation or if you use ISO code
generation with the Oracle customizer, even if your code does not
actually use Oracle-specific features.

This section covers the following topics:

Overview of the Oracle JDBC Drivers
Driver Selection for Translation

Driver Selection and Registration for Run Time

Overview of the Oracle JDBC Drivers
Oracle provides the following JDBC drivers:

Key Programming Considerations 3-1

Selection of the JDBC Driver

» Oracle Call Interface (OCI) driver: For client-side use with an Oracle client
installation.

s Thin driver: A pure Java driver for client-side use, particularly with applets. It
does not require an Oracle client installation.

= Server-side Thin driver: Is functionally the same as the client-side Thin driver, but
is for code that runs inside an Oracle Database instance and needs to access a
remote server.

= Server-side internal driver: For code that runs inside the target server, that is,
inside the Oracle Database instance that it must access.

Oracle Database 11g provides client-side drivers compatible with Java Development
Kit (JDK) 1.4.

See Also: Oracle Database JDBC Developer's Guide and Reference

Note: Remember that your choices may differ between translation
time and run time. For example, you may want to use the Oracle JDBC
OCI driver at translation time for semantics-checking, but the Oracle
JDBC Thin driver at run time.

Core JDBC Functionality

The core functionality of all Oracle JDBC drivers is the same. They support the same
feature set, syntax, programming interfaces, and Oracle extensions.

All Oracle JDBC drivers are supported by the oracle. jdbc.OracleDriver class.

JDBC OCI Driver

The Oracle JDBC OCI driver accesses the database by calling the OCI directly from
Java, providing the highest compatibility with the different Oracle Database versions.
These drivers support installed Oracle Net adapters, including interprocess
communication (IPC), named pipes, TCP/IP, and IPX/SPX.

The use of native methods to call C entry points makes the OCI driver dependent on
the Oracle platform, requiring an Oracle client installation that includes Oracle Net.
Therefore it is not suitable for applets.

Connect strings for the OCI driver are of the following form, where tns is an optional
TNS alias or full TNS specification:

jdbc:oracle:oci:@<tns>

Note: For backward compatibility, oc18 is still acceptable instead of
oci.

JDBC Thin Driver

The Oracle JDBC Thin driver is a platform-independent, pure Java implementation
that uses Java sockets to connect directly to the Oracle Database from any Oracle or
non-Oracle client. It can be downloaded into a browser simultaneously with the Java
applet being run.

The JDBC Thin driver supports only TCP/IP protocol and requires a TNS listener to be
listening on TCP/IP sockets from the database server. When the JDBC Thin driver is

3-2 Oracle Database SQLJ Developer's Guide and Reference

Selection of the JDBC Driver

used with an applet, the client browser must have the capability to support Java
sockets.

Connect strings for the JDBC Thin driver are typically of the following form:

jdbc:oracle:thin:@host:port/servicename

See Also: Oracle Database [DBC Developer’s Guide and Reference for
information about database service names

In Oracle Database 11g, connect strings using SIDs are deprecated, but are still
supported for backward compatibility:

jdbc:oracle:thin:@host:port:sid

JDBC Server-Side Thin Driver

The Oracle JDBC server-side Thin driver offers the same functionality as the client-side
JDBC Thin driver, but runs inside the database and accesses a remote server. This is
useful in accessing one Oracle Database instance from inside another, such as from a
Java stored procedure.

Connect strings for the server-side Thin driver are the same as for the client-side Thin
driver.

Note: In order to leave the originating database when using the
server-side Thin driver, the user account must have
SocketPermission assigned. Refer to the Oracle Database [DBC
Developer’s Guide and Reference for more information. Also, refer to
the Oracle Database Java Developer’s Guide for general information
about SocketPermission and other permissions.

JDBC Server-Side Internal Driver

The Oracle JDBC server-side internal driver provides support for any Java code that
runs inside the target Oracle Database instance where the SQL operations are to be
performed. The server-side internal driver enables the Oracle Java virtual machine
(JVM) to communicate directly with the SQL engine. This driver is the default JDBC
driver for SQLJ code running as a stored procedure, stored function, or trigger in
Oracle Database 11g.

Connect strings for the server-side internal driver are of the following form:
jdbc:oracle:kprb:

If your SQLJ code uses the default connection context, then SQLJ will automatically
use this driver for code running in the Oracle JVM.

Driver Selection for Translation

Use SQLJ option settings, either on the command line or in a properties file, to choose
the driver manager class and specify a driver for translation.

Use the SQLJ -driver option to choose any driver manager class other than
OracleDriver, which is the default.

Specify the particular JDBC driver to choose, such as JDBC Thin or JDBC OCI for
Oracle Database, as part of the connection URL you specify in the SQLJ -url option.

Key Programming Considerations 3-3

Connection Considerations

See Also: "Connection Options" on page 8-25

You will typically, but not necessarily, use the same driver that you use in your source
code for the run time connection.

Note: Remember that the -driver option does not choose a
particular driver. It registers a driver class with the driver manager.
One driver class might be used for multiple driver protocols, such
as OracleDriver, which is used for all of Oracle JDBC protocols.

Driver Selection and Registration for Run Time

To connect to the database at run time, you must register one or more drivers that will
understand the URLs you specify for any of your connection instances, whether they
are instances of the sqlj.runtime.ref.DefaultContext class or of any
connection context classes that you declare.

If you are using an Oracle JDBC driver and create a default connection using the
Oracle.connect () method, then SQLJ handles this automatically. The
Oracle.connect () method registers the oracle. jdbc.OracleDriver class.

If you are using an Oracle JDBC driver, but do not use Oracle.connect (), then you
must manually register the OracleDriver class, as follows:

DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

If you are not using an Oracle JDBC driver, then you must register some appropriate
driver class, as follows:

DriverManager.registerDriver (new mydriver. jdbc.driver.MyDriver());
In any case, you must also set your connection URL, user name, and password.

See Also: "Single Connection or Multiple Connections Using
DefaultContext" on page 3-5

Note: As an alternative to using the JDBC driver manager in
establishing JDBC connections, you can use data sources. You can
specify a data source in a with clause, as described in "Declaration
WITH Clause" on page 4-4. For general information about data
sources, refer to the Oracle Database [DBC Developer’s Guide and
Reference.

Connection Considerations

When deciding what database connection or connections you will need for your SQL]
application, consider the following:

= Will you need just one database connection or multiple connections?

s If using multiple connections (possibly to multiple schemas), then will each
connection use SQL entities of the same name: tables of the same name, columns
of the same name and data types, stored procedures of the same name and
signature, and so on?

= Will you need different connections for translation and run time or will the same
suffice for both?

3-4 Oracle Database SQLJ Developer’'s Guide and Reference

Connection Considerations

A SQLJ executable statement can specify a particular connection context instance,
either of DefaultContext or of a declared connection context class, for its database
connection. Alternatively, it can omit the connection context specification and use the
default connection, which is an instance of DefaultContext that was previously set
as the default.

Note: If your operations will use different sets of SQL entities,
then you will typically want to declare and use additional
connection context classes.

This section covers the following topics:

= Single Connection or Multiple Connections Using DefaultContext
s Closing Connections

= Multiple Connections Using Declared Connection Context Classes
= More About the Oracle Class

= More About the DefaultContext Class

= Connection for Translation

s Connection for Customization

Single Connection or Multiple Connections Using DefaultContext

This section discusses scenarios where you will use connection instances of only the
DefaultContext class.

This is typical if you are using a single connection, or multiple connections that use
SQL entities with the same names and data types.

Single Connection

For a single connection, use one instance of the DefaultContext class specifying the
database URL, user name, and password, when you construct your DefaultContext
object.

You can use the connect () method of the oracle.sqglj.runtime.Oracle class to
accomplish this. Calling this method automatically initializes the default connection
context instance. This method has several signatures, including ones that allow you to
specify user name, password, and URL, either directly or using a properties file. In the
following example, the properties file connect . properties is used:

Oracle.connect (MyClass.class, "connect.properties");

Note: The connect.properties file is searched for relative to
the specified class. In the example, if MyClass is located in
my-package, then connect .properties must be found in the
same package location, my-package.

If you use connect.properties, then you must edit it appropriately and package it
with your application. In this example, you must also import the
oracle.sglj.runtime.Oracle class.

Alternatively, you can specify user name, password, and URL directly:

Key Programming Considerations 3-5

Connection Considerations

Oracle.connect ("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger");

In this example, the connection will use the JDBC Thin driver to connect the scott
user with the password, tiger, to a database on the computer, localhost, through
port 1521, where myservice is the name of the database service for the connection.

Either of these examples creates a special static instance of the DefaultContext class
and installs it as your default connection. It is not necessary to do anything with this
DefaultContext instance directly.

Once you have completed these steps, you do not need to specify the connection for
any of the SQL]J executable statements in your application, if you want them all to use
the default connection.

Note that in using a JDBC Thin driver, the URL must include the host name, port
number, and service name (or SID, which is deprecated in Oracle Database 11g), as in
the preceding example. Also, the database must have a listener running at the
specified port. In using the JDBC OCI driver, no service name (or SID) is required if
you intend to use the default account of the client, as will be the case in examples in
this document. Alternatively, you can use name-value pairs.

See Also: Oracle Database [DBC Developer’s Guide and Reference for
more information

The following URL will connect to the default account of the client:

jdbc:oracle:oci:@

Notes:

s Oracle.connect () will not set your default connection if
one had already been set. In that case, it returns null. This
enables you to use the same code on a client or in the server. If
you do want to override your default connection, then use the
static setDefaultContext () method of DefaultContext.

s TheOracle.connect () method defaults to a false setting
of the auto-commit flag. However, it also has signatures to set it
explicitly. In the Oracle JDBC implementation, the auto-commit
flag defaults to true.

= You can optionally specify getClass () instead of
MyClass.class in the Oracle.connect () call, as long as
you are not calling getClass () from a static method. The
getClass () method is used in some of the SQLJ] demo
applications.

= You can access the static Defaul tContext instance, which
corresponds to your default connection, as follows:

DefaultContext.getDefaultContext () ;

Multiple Connections

For multiple connections, you can create and use additional instances of the
DefaultContext class, while optionally still using the default connection.

3-6 Oracle Database SQLJ Developer’s Guide and Reference

Connection Considerations

You can use the Oracle.getConnection () method to instantiate
DefaultContext, as in the following examples.

First, consider a case where you want most statements to use the default connection,
but other statements to use a different connection. You must create one additional
instance of DefaultContext:

DefaultContext ctx = Oracle.getConnection (
"jdbc:oracle:thin:@localhost2:1521/myservice2", "bill", "lion");

Note: ctx could also use the scott/tiger schema, if you want to
perform multiple sets of operations on the same schema.

When you want to use the default connection, it is not necessary to specify a
connection context:

#sqgl { SQL operation };

This is actually a shortcut for the following:

#sqgl [DefaultContext.getDefaultContext()] { SQL operation };

When you want to use the additional connection, specify ctx as the connection:

#sql [ctx] { SQL operation };

Next, consider situations where you want to use multiple connections, where each of
them is a named DefaultContext instance. This enables you to switch your
connection back and forth.

The following statements establish multiple connections to the same schema (in case
you want to use multiple Oracle Database sessions or transactions, for example).
Instantiate the DefaultContext class for each connection you will need:

DefaultContext ctxl = Oracle.getConnection
("jdbc:oracle:thin:@localhost1:1521/myservicel", "scott", "tiger");

DefaultContext ctx2 = Oracle.getConnection
("jdbc:oracle:thin:@localhostl:1521/myservicel", "scott", "tiger");

This creates two connection context instances that would use the same schema,
connecting to scott/tiger using service myservicel on the computer
localhostl, using the Oracle JDBC Thin driver.

Now, consider a case where you would want multiple connections to different
schemas. Again, instantiate the DefaultContext class for each connection you will
need:

DefaultContext ctxl = Oracle.getConnection
("jdbc:oracle:thin:@localhostl:1521/myservicel", "scott", "tiger");

DefaultContext ctx2 = Oracle.getConnection
("jdbc:oracle:thin:@localhost2:1521/myservice2", "bill", "lion");

This creates two connection context instances that use the Oracle JDBC Thin driver but
use different schemas. The ctx1 object connects to scott/tiger using service
myservicel on the computer localhostl, while the ctx2 object connects to
bill/lion using service myservice2 on the computer localhost2.

There are two ways to switch back and forth between these connections for the SQL]
executable statements in your application:

Key Programming Considerations 3-7

Connection Considerations

s If you switch back and forth frequently, then you can specify the connection for
each statement in your application:

#sqgl [ctxl] { SQL operation };

#sqgl [ctx2] { SQL operation };

Note: Include the square brackets around the connection context
instance name; they are part of the syntax.

= If you use either of the connections several times in a row within your code flow,
then you can periodically use the static setDefaultContext () method of the
DefaultContext class to reset the default connection. This method initializes the
default connection context instance. This way, you can avoid specifying
connections in your SQL]J statements.

DefaultContext.setDefaultContext (ctxl) ;

#sql { SQL operation }; // These three statements all use ctxl
#sqgl { SQL operation };

#sqgl { SQL operation };

DefaultContext.setDefaultContext (ctx2) ;

#sql { SQL operation }; // These three statements all use ctx2
#sql { SQL operation };

#sql { SQL operation };

Note: Because the preceding statements do not specify connection
contexts, at translation time they will all be checked against the
default connection context.

Closing Connections

It is advisable to close your connection context instances when you are done,
preferably in a finally clause of a try block (in case your application terminates
with an exception).

The DefaultContext class, as well as any connection context classes that you
declare, includes a close () method. Calling this method closes the SQL]J connection
context instance and, by default, also closes the underlying JDBC connection instance
and the physical connection.

In addition, the oracle.sqglj.runtime.Oracle class has a static close () method
to close the default connection only. In the following example, presume ctx is an
instance of any connection context class:

finally
{

ctx.close();

}

Alternatively, if the £inally clause is not within a try block in case a SQL exception
is encountered:

3-8 Oracle Database SQLJ Developer’'s Guide and Reference

Connection Considerations

finally

{
try { ctx.close(); } catch(SQLException ex) {...}

}

Or, to close the default connection, the Oracle class also provides a close () method:

finally
{

Oracle.close();

}

Always commit or roll back any pending changes before closing the connection.
Whether there would be an implicit COMMIT operation as the connection is closed is
not specified in the JDBC standard and may vary from vendor to vendor. For Oracle,
there is an implicit COMMIT when a connection is closed, and an implicit ROLLBACK
when a connection is garbage-collected without being closed, but it is not advisable to
rely on these mechanisms.

Note: Itis also possible to close a connection context instance
without closing the underlying connection (in case the underlying
connection is shared). Refer to "Closing Shared Connections" on
page 7-40 for more information.

Multiple Connections Using Declared Connection Context Classes

For multiple connections that use different sets of SQL entities, it is advantageous to
use connection context declarations to define additional connection context classes.
Having a separate connection context class for each set of SQL entities that you use
enables SQL]J to do more rigorous semantics-checking of your code.

See Also: "Connection Contexts" on page 7-1

More About the Oracle Class

The Oracle SQL] implementation provides the oracle.sqlj.runtime.Oracle
class to simplify the process of creating and using instances of the DefaultContext
class.

The static connect () method initializes the default connection context instance,
instantiating a DefaultContext object and installing it as your default connection.
You do not need to assign or use the DefaultContext instance returned by
connect (). If you had already established a default connection, then connect ()
returns null.

The static getConnection () method simply instantiates a DefaultContext object
and returns it. You can use the returned instance as desired.

Both methods register the Oracle JDBC driver manager automatically if the
oracle.jdbc.OracleDriver class is found in the CLASSPATH. The static close ()
method closes the default connection.

Signatures of the Oracle.connect() and Oracle.getConnection() Methods
Both the method have signatures that take the following parameter sets as input:

Key Programming Considerations 3-9

Connection Considerations

s URL (String), user name (String), password (String)

s URL (String), user name (String), password (String), auto-commit flag
(boolean)

s URL(String), java.util.Properties object containing properties for the
connection

s URL(String), java.util.Properties object, auto-commit flag (boolean)
s URL (String) fully specifying the connection, including user name and password

The following is an example of the format of a URL string specifying user name
(scott) and password (tiger) when using the Oracle JDBC drivers, in this case
the JDBC Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521/myservice"

= URL (String), auto-commit flag (boolean)

= A java.lang.Class object for the class relative to which the properties file is
loaded, name of properties file (String)

= A java.lang.Class object, name of properties file (String), auto-commit flag
(boolean)

» A java.lang.Class object, name of properties file (String), user name
(String), password (String)

» A java.lang.Class object, name of properties file (String), user name
(String), password (String), auto-commit flag (boolean)

= JDBC connection object (Connection)
= SQLJ connection context object

These last two signatures inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

The auto-commit flag specifies whether SQL operations are automatically committed.
For the Oracle.connect () and Oracle.getConnection () methods only, the
default is false. If that is the setting you want, then you can use one of the signatures
that does not take auto-commit as input. However, anytime you use a constructor to
create an instance of a connection context class, including DefaultContext, you
must specify the auto-commit setting. In the Oracle JDBC implementation, the default
for the auto-commit flag is true.

See Also: "Basic Transaction Control"” on page 3-18 and "Single
Connection or Multiple Connections Using DefaultContext" on
page 3-5

Optional Oracle.close() Method Parameters

In using the Oracle.close () method to close the default connection, you have the
option of specifying whether or not to close the underlying physical database
connection. By default it is closed. This is relevant if you are sharing this physical
connection between multiple connection objects, either SQL] connection context
instances or JDBC connection instances.

You can keep the underlying physical connection open as follows:

Oracle.close(ConnectionContext .KEEP_CONNECTION) ;

You can close the underlying physical connection (default behavior) as follows:

3-10 Oracle Database SQLJ Developer’'s Guide and Reference

Connection Considerations

Oracle.close(ConnectionContext.CLOSE_CONNECTION) ;

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

See Also: "Closing Shared Connections" on page 7-40

More About the DefaultContext Class

The sglj.runtime.ref.DefaultContext class provides a complete default
implementation of a connection context class. As with classes created using a
connection context declaration, the DefaultContext class implements the
sglj.runtime.ConnectionContext interface. The DefaultContext class has
the same class definition that would have been generated by the SQL]J translator from
the declaration:

#sgl public context DefaultContext;

DefaultContext Methods
The following are the key methods of the DefaultContext class:

m getConnection ()

Gets the underlying JDBC connection object. This is useful if you want to have
JDBC code in your application, which is one way to use dynamic SQL operations.
You can also use the setAutoCommit () method of the underlying JDBC
connection object to set the auto-commit flag for the connection.

m setDefaultContext ()

Sets the default connection your application uses. This is a static method and
takes a DefaultContext instance as input. SQLJ executable statements that do
not specify a connection context instance will use the default connection that you
define using this method or the Oracle. connect () method.

m getDefaultContext ()

Returns the DefaultContext instance currently defined as the default
connection for your application. This is a static method.

m close()
Closes the connection context instance.

The getConnection () and close () methods are specified in the
sglj.runtime.ConnectionContext interface.

Note: On a client, getDefaultContext () returns null if
setDefaultContext () was not previously called. However, if a
data source object has been bound under
"jdbc/defaultbDataSource" in JNDI, then the client will use this
data source object as its default connection.

In the server, getDefaultContext () returns the default
connection, which is the connection to the server itself.

DefaultContext Constructors

It is typical to instantiate DefaultContext using the Oracle.connect () or
Oracle.getConnection () method. However, if you want to create an instance

Key Programming Considerations 3-11

Connection Considerations

directly, then there are five constructors for DefaultContext. The different input
parameter sets for these constructors are:

s URL (String), user name (String), password (String), auto-commit
(boolean)

s URL (String), java.util.Properties object, auto-commit (boolean)

s URL (String fully specifying connection and including user name and
password), auto-commit setting (boolean)

The following is an example of the format of a URL specifying user name and
password when using the Oracle JDBC drivers, in this case the JDBC Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521/myservice"

= JDBC connection object (Connection)
= SQLJ connection context object

The last two signatures inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

Following is an example of constructing a DefaultContext instance:
DefaultContext defctx = new DefaultContext

("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", false);

Notes About Connection Context Constructors:

Notes: You must keep the following in mind when using connection
context constructors:

= Itis important to note that connection context class constructors,
unlike the Oracle.connect () method, require an auto-commit
setting.

= To use any of the first three constructors listed, you must first
register your JDBC driver. This happens automatically if you are
using an Oracle JDBC driver and call Oracle. connect (). Refer
to "Driver Selection and Registration for Run Time" on page 3-4.

= Connection context classes that you declare generally have the
same constructor signatures as the DefaultContext class.
However, if you declare a connection context class to be associated
with a data source, a different set of constructors is provided.
Refer to "Standard Data Source Support"” on page 7-9 for more
information.

= When using the constructor that takes a JDBC connection object,
do not initialize the connection context instance with a null JDBC
connection.

s The auto-commit setting determines whether SQL operations are
automatically committed. Refer to "Basic Transaction Control" on
page 3-18 for more information.

Optional DefaultContext close() Method Parameters

When you close a connection context instance, you have the option of specifying
whether or not to close the underlying physical connection. By default it is closed. This
is relevant if you are sharing the physical connection between multiple connection

3-12 Oracle Database SQLJ Developer’'s Guide and Reference

Connection Considerations

objects, either SQLJ connection context instances or JDBC connection instances. The
following examples presume a DefaultContext instance defctx.

To keep the underlying physical connection open, use the following:

defctx.close (ConnectionContext .KEEP_CONNECTION) ;

To close the underlying physical connection, which is the default behavior, use the
following:

defctx.close(ConnectionContext .CLOSE_CONNECTION) ;

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

See Also: "Closing Shared Connections" on page 7-40 for more
information about using these parameters and about shared
connections

Connection for Translation

If you want to use online semantics-checking during translation, then you must
specify a database connection for SQL]J to use. These are referred to as exemplar
schemas.

See Also: "Connection Context Concepts" on page 7-2

You can use different connections for translation and run time. In fact, it is often
necessary or preferable to do so. It might be necessary if you are not developing the
application in the same kind of environment that it will run in. But even if the run time
connection is available during translation, it might be preferable to create an account
with a narrower set of resources so that your online checking will be tighter. This
would be true if your application uses only a small subset of the SQL entities available
in the run time connection. Your online checking would be tighter and more
meaningful if you create an exemplar schema consisting only of SQL entities that your
application actually uses.

Use the SQLJ translator connection options, either on the command line or in a
properties file, to specify a connection for translation.

See Also: "Connection Options" on page 8-25

Connection for Customization

Generally, Oracle customization does not require a database connection. However, the
Oracle SQL] implementation does support customizer connections. This is useful in
two circumstances:

s If you are using the Oracle customizer with the optcols option enabled, then a
connection is required. This option allows iterator column type and size
definitions for performance optimization.

s If you are using SQLCheckerCustomizer, a specialized customizer that
performs semantics-checking on profiles, then a connection is required if you are
using an online checker, which is true by default.

For Oracle-specific code generation, the SQLJ translator has an -optcols option with
the same functionality. The SQLCheckerCustomizer is invoked through the Oracle
customizer harness verify option. Use the customizer harness user, password,

Key Programming Considerations 3-13

NULL-Handling

url, and driver options to specify connection parameters for whatever customizer
you are using, as appropriate.
See Also:

= "Oracle Customizer Column Definition Option (optcols)"” on
page A-18.

= "SQLCheckerCustomizer for Profile Semantics-Checking" on
page A-27

s "Customizer Harness Options for Connections" on page A-11

NULL-Handling

Java primitive types, such as int, double, or f£loat, cannot have null values. You
must consider this in choosing your result expression and host expression types.

This section covers the following topics:
= Wrapper Classes for NULL-Handling
= Examples of NULL-Handling

Wrapper Classes for NULL-Handling

SQLJ consistently enforces retrieving SQL NULL as Java null, in contrast to JDBC,
which retrieves NULL as 0 or false for certain data types. Therefore, do not use Java
primitive types in SQL]J for output variables in situations where a SQL NULL may be
received, because Java primitive types cannot take null values.

This pertains to result expressions, output or input-output host expressions, and
iterator column types. If the receiving Java type is primitive and an attempt is made to
retrieve a SQL NULL, then a sglj.runtime.SQLNullException is thrown and no
assignment is made.

To avoid the possibility of NULL being assigned to Java primitives, use the following
wrapper classes instead of primitive types:

s Jjava.lang.Boolean
s Jjava.lang.Byte

m Jjava.lang.Short

s Jjava.lang.Integer
s Java.lang.Long

s Jjava.lang.Double
s Jjava.lang.Float

In case you must convert back to a primitive value, each of these wrapper classes has
an xxxValue () method. For example, intValue () returns an int value from an
Integer object and floatValue () returns a float value from a Float object. For
example, presuming intobj is an Integer object:

int j = intobj.intValue();

3-14 Oracle Database SQLJ Developer’'s Guide and Reference

Exception-Handling Basics

Notes:

» SQLNullException is asubclass of the standard
java.sqgl.SQLException class.

= Because Java objects can have null values, there is no need for
indicator variables in SQLJ, such as those used in other host
languages like C, C++, and COBOL.

Examples of NULL-Handling

The following examples show the use of the java .lang wrapper classes to handle
NULL.

Example: Null Input Host Variable
In the following example, a Float object is used to pass a null value to the database:

int empno = 7499;
Float commission = null;

#sqgl { UPDATE emp SET comm = :commission WHERE empno = :empno };

You cannot use the Java primitive type £1loat to accomplish this.

Example: Null lterator Rows

In the following example, a Double column type is used in an iterator to allow for the
possibility of null data.

For each employee in the emp table whose salary is at least $50,000, the employee
name (ENAME) and commission (COMM) are selected into the iterator. Then each row is
tested to determine if the COMM field is, in fact, null. If so, then it is processed
accordingly.

#sql iterator Employeelter (String ename, Double comm) ;

Employeelter ei;
#sqgl el = { SELECT ename, comm FROM emp WHERE sal >= 50000 };

while (ei.next())
{
if (ei.comm() == null)
System.out.println(ei.ename() + " is not on commission.");
}

ei.close();

Note: To execute a WHERE clause comparison against NULL, use
the following SQL syntax:

...WHERE :x IS NULL

Exception-Handling Basics

This section covers the basics of handling exceptions in SQL]J application, including
requirements for error-checking. This section covers the following topics:

Key Programming Considerations 3-15

Exception-Handling Basics

s SQLJ and JDBC Exception-Handling Requirements
» Processing Exceptions

= Using SQLException Subclasses

SQLJ and JDBC Exception-Handling Requirements

Because SQL]J executable statements result in JDBC calls through sqglj . runtime, and
JDBC requires SQL exceptions to be caught or thrown, SQL]J also requires SQL
exceptions to be caught or thrown in any block containing SQL] executable statements.
Your source code will generate errors during compilation if you do not include
appropriate exception-handling.

Handling SQL exceptions requires the SQLException class, which is included in the
standard JDBC java.sqgl. * package.

Example: Exception Handling

This example demonstrates the basic exception-handling required in SQL]J
applications. The code declares a main method with a try/catch block and another
method, which throws SQLException when an exception is encountered. The code is
as follows:

/* Import SQLExceptions class. The SQLException comes from
JDBC. Executable #sgl clauses result in calls to JDBC, so methods
containing executable #sqgl clauses must either catch or throw
SQLException.
*/
import java.sql.* ;
import oracle.sglj.runtime.Oracle;

// iterator for the select
#sqgl iterator MyIter (String ITEM_NAME) ;

public class TestInstallSQLJ
{
//Main method
public static void main (String args[])
{
try {

// Set the default connection to the URL, user, and password
// specified in your connect.properties file
Oracle.connect (TestInstallSQLJ.class, "connect.properties");

TestInstallSQLJ ti = new TestInstallSQLJ();

// This method throws SQLException. Therefore, it ic called within a try block
ti.runExample();

} catch (SQLException e) {
System.err.println("Error running the example: " + e);
}
} //End of method main
//Method that runs the example

void runExample() throws SQLException

{

3-16 Oracle Database SQLJ Developer’'s Guide and Reference

Exception-Handling Basics

//Issue SQL command to clear the SALES table
#sql { DELETE FROM SALES };
#sgl { INSERT INTO SALES(ITEM_NAME) VALUES ('Hello, SQLJ!')};

MyIter iter;
#sqgl iter = { SELECT ITEM_NAME FROM SALES };

while (iter.next()) {
System.out.println(iter.ITEM_NAME()) ;
}
}

Processing Exceptions

This section discusses ways to process and interpret exceptions in your SQL]J
application. During run time, exceptions may be raised from any of the following:

s SQLJ run time
s JDBC driver
= RDBMS

Printing Error Text

The example in the previous section showed how to catch SQL exceptions and output
the error messages. Part of that code is as follows:

try {
} catch (SQLException e) {

System.err.println("Error running the example: " + e);

}

This will print the error text from the SQLException object.

You can also retrieve error information using the getMessage (), getErrorCode (),
and getSQLState () methods the SQLException class.

Printing the error text, as in this example, prints the error message with some
additional text, such as "SQLException".

Retrieving SQL States and Error Codes

The java.sqgl.SQLException class and subclasses include the getMessage (),
getErrorCode (), and getSQLState () methods. Depending on where the
exception or error originated and how they are implemented there, the following
methods provide additional information:

m String getMessage()

If the error originates in the SQLJ run time or JDBC driver, then this method
returns the error message with no prefix. If the error originates in the RDBMS,
then it returns the error message prefixed by the ORA number.

m 1int getErrorCode()

Key Programming Considerations 3-17

Basic Transaction Control

If the error originates in the SQLJ run time, then this method returns no
meaningful information. If the error originates in the JDBC driver or RDBMS, then
it returns the five-digit ORA number as an integer.

m String getSQLState()

If the error originates in the SQL]J run time, then this method returns a string with
a five-digit code indicating the SQL state. If the error originates in the JDBC driver,
then it returns no meaningful information. If the error originates in the RDBMS,
then it returns the five-digit SQL state. Your application should have appropriate
code to handle null values returned.

The following example prints the error message and also checks the SQL state:
try

} catch (SQLException e) {

System.err.println("Error running the example: " + e);
String sqglState = e.getSQLState();
System.err.println("SQL state = " + sglState);

Using SQLException Subclasses

For more specific error-checking, use any available and appropriate subclasses of the
java.sqgl.SQLException class.

SQLJ provides the sglj . runtime.NullException class, which is a subclass of
java.sqgl.SQLException. You can use this exception in situations where a NULL
might be returned into a Java primitive variable.

For batch-enabled environments, there is also the standard
java.sql.BatchUpdateException subclass. Refer to "Error Conditions During
Batch Execution" on page 10-15 for further information.

When you use a subclass of SQLException, catch the subclass exception before
catching SQLException, as in the following example:

try {

} catch (SQLNullException ne) {

System.err.println("Null value encountered: " + ne); }
catch (SQLException e) {
System.err.println("Error running the example: " + e); }

This is because a subclass exception can also be caught as a SQLException. If you
catch SQLException first, then execution will not proceed to the part where you have
coded special processing for the subclass exception.

Basic Transaction Control

This section discusses how to manage data updates. It covers the following topics:
= Overview of Transactions

s Automatic Commits Versus Manual Commits

3-18 Oracle Database SQLJ Developer’'s Guide and Reference

Basic Transaction Control

s Specifying Auto-Commit as You Define a Connection

= Modifying Auto-Commit in an Existing Connection

s Using Manual COMMIT and ROLLBACK

s Effect of Commits and Rollbacks on Iterators and Result Sets

= Using Savepoints

See Also: "Advanced Transaction Control" on page 7-35

Overview of Transactions

A transaction is a sequence of SQL operations that Oracle treats as a single unit. A
transaction begins with the first executable SQL statement after any of the following:

= Connection to the database
= COMMIT (committing data updates, either automatically or manually)
= ROLLBACK (canceling data updates)

A transaction ends with a COMMIT or ROLLBACK operation.

Note: In Oracle Database 11g, all data definition language (DDL)
statements, such as CREATE and ALTER, include an implicit
COMMIT. This will commit not only the DDL statement, but all the
preceding data manipulation language (DML) statements, such as
INSERT, DELETE, and UPDATE, that have not yet been committed
or rolled back.

Automatic Commits Versus Manual Commits

In using SQLJ or JDBC, you can either have your data updates automatically
committed or commit them manually. In either case, each COMMIT operation starts a
new transaction. You can specify that changes be committed automatically by enabling
the auto-commit flag. This can be done either when you define a SQLJ connection or
by using the setAutoCommit () method of the underlying JDBC connection object of
an existing connection. You can use manual control by disabling the auto-commit flag
and using SQLJ COMMIT and ROLLBACK statements.

Enabling auto-commit may be more convenient, but gives you less control. For
example, you have no option to roll back changes. In addition, some SQL]J or JDBC
features are incompatible with auto-commit mode. For example, you must disable the
auto-commit flag for update batching or SELECT FOR UPDATE syntax to work

properly.

Specifying Auto-Commit as You Define a Connection

When you use the Oracle.connect () or Oracle.getConnection () method to
create a DefaultContext instance and define a connection, the auto-commit flag is
set to false by default. However, there are signatures of these methods that allow
you to set this flag explicitly. The auto-commit flag is always the last parameter.

The following is an example of instantiating DefaultContext and using the default
false setting for auto-commit mode:

Oracle.getConnection
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger");

Key Programming Considerations 3-19

Basic Transaction Control

Alternatively, you can specify a true setting as follows:

Oracle.getConnection
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", true);

See Also: "More About the Oracle Class" on page 3-9

If you use a constructor to create a connection context instance, either of
DefaultContext or of a declared connection context class, then you must specify the
auto-commit setting. Again, it is the last parameter, as in the following example:

DefaultContext ctx = new DefaultContext
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", false);

See Also: "More About the DefaultContext Class" on page 3-11

If you have reason to create a JDBC Connection instance directly, then the
auto-commit flag is set to true by default if your program runs on a client, or false
by default if it runs in the server. You cannot specify an auto-commit setting when you
create a JDBC Connection instance directly, but you can use the setAutoCommit ()
method to alter the setting.

Note: Auto-commit functionality is not supported by the JDBC
server-side internal driver.

Modifying Auto-Commit in an Existing Connection

There is typically no reason to change the auto-commit flag setting for an existing
connection, but you can if you desire. You can do this by using the
setAutoCommit () method of the underlying JDBC connection object.

You can retrieve the underlying JDBC connection object by using the
getConnection () method of any SQLJ connection context instance, whether it is an
instance of the DefaultContext class or of a connection context class that you
declared.

You can accomplish these two steps at once, as follows:

ctx.getConnection() .setAutoCommit (false) ;

or:

ctx.getConnection() .setAutoCommit (true) ;

In these examples, ctx is a SQL] connection context instance.

Note: Do not alter the auto-commit setting in the middle of a
transaction.

Using Manual COMMIT and ROLLBACK

If you disable the auto-commit flag, then you must manually commit any data
updates. To commit any changes that have been executed since the last COMMIT
operation, use the SQLJ COMMIT statement, as follows:

#sql { COMMIT };

3-20 Oracle Database SQLJ Developer’'s Guide and Reference

Basic Transaction Control

To roll back any changes that have been executed since the last COMMIT operation, use
the SQLJ ROLLBACK statement, as follows:

#sqgl { ROLLBACK };

Notes:

s Do not use the COMMIT and ROLLBACK commands when
auto-commit is enabled. This will result in unspecified
behavior, or even SQL exceptions could be raised.

= You can also roll back to a specified savepoint. Refer to "Using
Savepoints" on page 3-21.

= All DDL statements in Oracle SQL syntax include an implicit
COMMIT operation. There is no special SQL] functionality in this
regard. Such statements follow standard Oracle SQL rules.

s If auto-commit mode is off and you close a connection context
instance from a client application, then any changes since your
last COMMIT will be committed, unless you close the connection
context instance with KEEP_CONNECTION. Refer to "Closing
Shared Connections" on page 7-40 for more information.

Effect of Commits and Rollbacks on Iterators and Result Sets

COMMIT and ROLLBACK operations do not affect open result sets and iterators. The
result sets and iterators will still be open. Usually, all that is relevant to their content is
the state of the database at the time of execution of the SELECT statements that
populated them.

Note: An exception to this is if you declared an iterator class with
sensitivity=SENSITIVE. In this case, changes to the underlying
result set may be seen whenever the iterator is scrolled outside of
its window size. For more information about scrollable iterators,
refer to "Scrollable Iterators" on page 7-30. For more information
about the underlying scrollable result sets, refer to the Oracle
Database [DBC Developer's Guide and Reference.

This also applies to UPDATE, INSERT, and DELETE statements that are executed after
the SELECT statements. Execution of these statements does not affect the contents of
open result sets and iterators.

Consider a situation where you SELECT, then UPDATE, and then COMMIT. A
non-sensitive result set or iterator populated by the SELECT statement will be
unaffected by the UPDATE and COMMIT.

As a further example, consider a situation where you UPDATE, then SELECT, and then
ROLLBACK. A non-sensitive result set or iterator populated by the SELECT will still
contain the updated data, regardless of the subsequent ROLLBACK.

Using Savepoints

The JDBC 3.0 specification added support for savepoints. A savepoint is a defined
point in a transaction that you can roll back to, if desired, instead of rolling back the

Key Programming Considerations 3-21

Basic Transaction Control

entire transaction. The savepoint is the point in the transaction where the SAVEPOINT
statement appears.

In Oracle9i Database release 2 (9.2), SQLJ first included Oracle-specific syntax to
support savepoints. In Oracle Database 11g, SQL]J adds support for ISO savepoint
syntax.

Support for ISO SQLJ Savepoint Syntax

In ISO syntax, use a string literal in a SAVEPOINT statement to designate a name for a
savepoint. This can be done as follows:

#sqgl { SAVEPOINT savepointl };
If you want to roll back changes to that savepoint, then you can refer to the specified
name later in a ROLLBACK TO statement, as follows:

#sqgl { ROLLBACK TO savepointl };

Use a RELEASE SAVEPOINT statement if you no longer need the savepoint:
#sgl { RELEASE SAVEPOINT savepointl };

Savepoints are saved in the SQL]J execution context, which has methods that parallel
the functionality of these three statements.

See Also: "Savepoint Methods" on page 7-23

Because any COMMIT operation ends the transaction, this also releases all savepoints of
the transaction.

Oracle SQLJ Savepoint Syntax

In addition to the ISO syntax, the following Oracle-specific syntax for savepoints is
supported. Note that the Oracle syntax uses string host expressions, rather than string
literals.

You can set a savepoint as follows:

#sqgl { SET SAVEPOINT :savepoint };

The host expression, savepoint in this example, is a variable that specifies the name
of the savepoint as a Java String.

You can roll back to a savepoint as follows:

#sqgl { ROLLBACK TO :savepoint };

To release a savepoint, use the following SQL]J statement:

#sqgl { RELEASE :savepoint };

Note: Oracle-specific syntax will continue to be supported for
backward compatibility. Note the following differences between
Oracle syntax and ISO syntax:

s Oracle syntax takes string variables rather than string literals.
s Oracle syntax uses SET SAVEPOINT instead of SAVEPOINT.

s Oracle syntax uses RELEASE instead of RELEASE SAVEPOINT.

3-22 Oracle Database SQLJ Developer’'s Guide and Reference

Summary: First Steps in SQLJ Code

Summary: First Steps in SQLJ Code

The best way to summarize the SQL] executable statement features and functionality
discussed to this point is by examining short but complete programs. This section
presents two such examples.

The first example, presented one step at a time and then again in its entirety, uses a
SELECT INTO statement to perform a single-row query of two columns from a table
of employees. If you want to run the example, ensure that you change the parameters
in the connect . properties file to settings that will let you connect to an
appropriate database.

The second example, slightly more complicated, will make use of a SQL] iterator for a
multi-row query.

Import Required Classes

Import any JDBC or SQL]J packages you will need. You will need at least some of the
classes in the java . sql package:

import java.sqgl.*;

You may not need all the java. sql package. Key classes are
java.sql.SQLException and any classes that you refer to explicitly. For example,
java.sqgl.Date and java.sgl.ResultSet.

You will need the following package for the Oracle class, which you typically use to
instantiate DefaultContext objects and establish your default connection:

import oracle.sqglj.runtime.*;

If you will be using any SQLJ run time classes directly in your code, then import the
following packages:

import sglj.runtime.*;
import sglj.runtime.ref.*;

However, even if your code does not use any SQLJ run time classes directly, it will be
sufficient to have them in the CLASSPATH.

Key run time classes include ResultSetIterator and ExecutionContext in the
sglj.runtime package and DefaultContext inthe sqlj.runtime.ref
package.

Register JDBC Drivers and Set Default Connection
Declare the SimpleExample class with a constructor that uses the static

Oracle.connect () method to set the default connection. This also registers the
Oracle JDBC drivers.

This uses a signature of connect () that takes the URL, user name, and password
from the connect.properties file. An example of this file is in the directory
ORACLE_HOME/sglj/demo and also in "Set Up the Run Time Connection" on
page 2-8.

public class SimpleExample {
public SimpleExample() throws SQLException {
// Set default connection (as defined in connect.properties).

Oracle.connect (getClass(), "connect.properties");
}

Key Programming Considerations 3-23

Summary: First Steps in SQLJ Code

Set Up Exception Handling

Create amain () that calls the SimpleExample constructor and then sets up a
try/catch block to handle any SQL exceptions thrown by the runExample ()
method, which performs the real work of this application:

public static void main (String [] args) {

try {
SimpleExample ol = new SimpleExample();
ol.runExample() ;

}

catch (SQLException ex) {
System.err.println("Error running the example: " + ex);

}

You can also use a try/catch block inside a finally clause when you close the
connection, presuming the finally clause is not already inside a try/catch block
in case of SQL exceptions:

finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

}

Set Up Host Variables, Execute SQLJ Clause, Process Results
Create a runExample () method that performs the following:

1. Throws any SQL exceptions to themain () method for processing.
2. Declares Java host variables.

3. Executes a SQLJ clause that binds the Java host variables into an embedded
SELECT statement and selects the data into the host variables.

4. Prints the results.
The code for this method is as follows:

void runExample() throws SQLException ({
System.out.println("Running the example--");

// Declare two Java host variables--
Float salary;
String empname;

// Use SELECT INTO statement to execute query and retrieve values.
#sql { SELECT ename, sal INTO :empname, :salary FROM emp
WHERE empno = 7499 };

// Print the results--
System.out.println("Name is " + empname + ", and Salary is " + salary);

} // Closing brace of SimpleExample class

This example declares salary and empname as Java host variables. The SQLJ clause
then selects data from the ename and sal columns of the emp table and places the
data into the host variables. Finally, the values of salary and empname are printed.

3-24 Oracle Database SQLJ Developer’'s Guide and Reference

Summary: First Steps in SQLJ Code

Note that this SELECT statement could select only one row of the emp table, because
the empno column in the WHERE clause is the primary key of the table.

Example of Single-Row Query using SELECT INTO

This section presents the entire SimpleExample class from the previous step-by-step
sections. Because this is a single-row query, no iterator is required.

// Import SQLJ classes:
import sglj.runtime.*;

import sglj.runtime.ref.*;
import oracle.sglj.runtime.*;

// Import standard java.sgl package:
import java.sql.*;

public class SimpleExample {

public SimpleExample() throws SQLException {
// Set default connection (as defined in connect.properties).

Oracle.connect (getClass(), "connect.properties");

}

public static void main (String [] args) throws SQLException {
try {

SimpleExample ol = new SimpleExample();
ol.runExample() ;

}

catch (SQLException ex) {
System.err.println("Error running the example: " + ex);

finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

void runExample() throws SQLException {
System.out.println("Running the example--");
// Declare two Java host variables--
Float salary;
String empname;
// Use SELECT INTO statement to execute query and retrieve values.
#sqgl { SELECT ename, sal INTO :empname, :salary FROM emp

WHERE empno = 7499 };

// Print the results--
System.out.println("Name is " + empname + ", and Salary is " + salary);

Set Up a Named Iterator

This example builds on the previous example by adding a named iterator and using it
for a multiple-row query.

Key Programming Considerations 3-25

Summary: First Steps in SQLJ Code

First, declare the iterator class. Use object types Integer and Float, instead of
primitive types int and float, wherever there is the possibility of NULL values.

#sgl iterator EmpRecs (
int empno, // This column cannot be null, so int is OK.
// (If null is possible, use Integer.)
String ename,
String job,
Integer mgr,
Date hiredate,
Float sal,
Float comm,
int deptno);

Next, instantiate the EmpRecs class and populate it with query results.

EmpRecs employees;

#sqgl employees = { SELECT empno, ename, job, mgr, hiredate,
sal, comm, deptno FROM emp };

Then, use the next () method of the iterator to print the results.

while (employees.next()) {
System.out.println("Name: " employees.ename());
System.out.println("EMPNO: " employees.empno ());
System.out.println("Job: " employees.job());
System.out.println("Manager: " employees.mgr());

employees.hiredate());

+ + 4+ + + + 4+ o+

System.out.println("Salary: " employees.sal());
System.out.println("Commission: " employees.comm());
System.out.println("Department: " employees.deptno());

(
(
(
(
System.out.println("Date hired: "
(
(
(
(

System.out.println();

Finally, close the iterator.

employees.close();

Example of Multiple-Row Query Using Named Iterator

This example uses a named iterator for a multiple-row query that selects several
columns of data from a table of employees.

Apart from use of the named iterator, this example is conceptually similar to the
previous single-row query example.

// Import SQLJ classes:
import sglj.runtime.*;

import sqglj.runtime.ref.*;
import oracle.sglj.runtime.*;

// Import standard java.sqgl package:
import java.sql.*;

// Declare a SQLJ iterator.
// Use object types (Integer, Float) for mgr, sal, And comm rather
// than primitive types to allow for possible null selection.

#sgl iterator EmpRecs (
int empno, // This column cannot be null, so int is OK.
// (If null is possible, Integer is required.)
String ename,

3-26 Oracle Database SQLJ Developer’'s Guide and Reference

Summary: First Steps in SQLJ Code

String job,
Integer mgr,
Date hiredate,
Float sal,
Float comm,
int deptno);

// This is the application class.
public class EmpDemolApp {

public EmpDemolApp() throws SQLException {
// Set default connection (as defined in connect.properties).
Oracle.connect (getClass (), "connect.properties");

public static void main(String[] args) {
try {

EmpDemolApp app = new EmpDemolApp () ;
app.runExample () ;

}
catch(SQLException exception) {
System.err.println("Error running the example: " + exception);
}
}
finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

void runExample() throws SQLException {
System.out.println("\nRunning the example.\n");

// The query creates a new instance of the iterator and stores it in
// the variable 'employees' of type 'EmpRecs'. SQLJ translator has
// automatically declared the iterator so that it has methods for

// accessing the rows and columns of the result set.

EmpRecs employees;

#sqgl employees = { SELECT empno, ename, job, mgr, hiredate,
sal, comm, deptno FROM emp };

// Print the result using the iterator.
// Note how the next row is accessed using method 'nmext()', and how

// the columns can be accessed with methods that are named after the
// actual database column names.

while (employees.next()) {
System.out.println("Name: " employees.ename());
System.out.println("EMPNO: " employees.empno ());
System.out.println("Job: " employees.job());
System.out.println("Manager: " employees.mgr());

employees.hiredate());

+ + 4+ + + + + o+

System.out.println("Salary: ! employees.sal());
System.out.println("Commission: " employees.comm());
System.out.println("Department: " employees.deptno());

(
(
(
(
System.out.println("Date hired: "
(
(
(
(

System.out.println();

Key Programming Considerations 3-27

Oracle-Specific Code Generation (No Profiles)

}

// You must close the iterator when it’s no longer needed.
employees.close() ;
}
}

Oracle-Specific Code Generation (No Profiles)

Throughout this manual there is general and standard discussion of the SQL] run time
layer and SQL]J profiles. However, the Oracle SQLJ implementation, by default,
generates Oracle-specific code with direct calls to the Oracle JDBC driver instead of
generating ISO standard code that calls the SQL] run time. With Oracle-specific code
generation, there are no profile files, and the role of the SQL]J run time layer is greatly
reduced during program execution. Oracle-specific code supports all Oracle-specific
extended features.

Code generation is determined through the SQL]J translator -codegen option. The
default setting for Oracle-specific code generation is -~codegen=oracle.
Alternatively, you can set -codegen=1iso for code generation according to the ISO
standard.

See Also: "Code Generation (-codegen)" on page 8-41.

This section covers the following topics:

= Advantages and Disadvantages of Oracle-Specific Code Generation

» Environment Requirements for Oracle-Specific Code Generation

s Code Considerations and Limitations with Oracle-Specific Code Generation
= SQLJ Usage Changes with Oracle-Specific Code Generation

= Server-Side Considerations with Oracle-Specific Code Generation

Advantages and Disadvantages of Oracle-Specific Code Generation

Oracle-specific code generation offers following advantages over ISO standard code
generation:

= Applications run more efficiently. The code calls JDBC application programming
interfaces (APIs) directly, placing run-time performance directly at the JDBC level.
The role of the intermediate SQL] run time layer is greatly reduced during
program execution.

= Applications are smaller in size.

= No profile files (. ser) are produced. This is especially convenient if you are
loading a translated application into the database or porting it to another system,
because there are fewer components.

» Translation is faster, because there is no profile customization step.

s During execution, the Oracle SQL]J run time and Oracle JDBC driver use the same
statement cache resources, so partitioning resources between the two is
unnecessary.

= Having the SQL-specific information appear in the Java class files instead of in
separate profile files avoids potential security issues.

3-28 Oracle Database SQLJ Developer’'s Guide and Reference

Oracle-Specific Code Generation (No Profiles)

You will not have to rewrite your code to take advantage of possible future Oracle
JDBC performance enhancements, such as enhancements being considered for
execution of static SQL code. Future releases of the Oracle SQL]J translator will
handle this automatically.

The use of Java reflection at run time is eliminated, and thus, provides full
portability to browser environments.

However. there are a few disadvantages:

Oracle-specific generated code does not adhere to SQL]J standards and is not
portable to generic JDBC platforms.

Profile-specific functionality is not available. For example, you cannot perform
customizations at a later date to use the Oracle customizer harness -debug,
-verify, and -print options.

See Also: "Customizer Harness Options for Connections” on
page A-11 and "AuditorInstaller Customizer for Debugging" on
page A-30

Environment Requirements for Oracle-Specific Code Generation

Be aware of the following requirements of your environment if you use Oracle-specific
code generation:

You must use an Oracle9i or later version of JDBC driver, because Oracle-specific
code generation requires JDBC statement caching functionality.

The generic SQL]J run time library, runtime, is not supported for Oracle-specific
code generation. You must have one of the following Oracle SQLJ run time
libraries in the CLASSPATH:

- runtimel2.jar (or .zip)

— runtimel2ee.jar (or .zip)

See Also: "Requirements for Using the Oracle SQL]
Implementation" on page 2-2

Code Considerations and Limitations with Oracle-Specific Code Generation

When coding a SQL]J application where Oracle-specific code generation will be used,
be aware of the following programming considerations and restrictions:

To use a nondefault statement cache size, you must include appropriate method
calls in your code, because the Oracle customizer stmtcache option is
unavailable. Refer to "SQL] Usage Changes with Oracle-Specific Code Generation"
on page 3-31.

Do not mix Oracle-specific generated code with ISO standard generated code in
the same application. However, if Oracle-specific code and ISO standard code must
share the same connection, do one of the following;:

- Ensure that the Oracle-specific code and ISO standard code use different SQLJ
execution context instances. Refer to "Execution Contexts" on page 7-17 for
information about SQL]J execution contexts.

- Place a transaction boundary, that is, as a manual COMMIT or ROLLBACK
statement, between the two kinds of code.

Key Programming Considerations 3-29

Oracle-Specific Code Generation (No Profiles)

This limitation regarding mixing code is especially significant for server-side code,
because all Java code running in a given session uses the same JDBC connection
and SQL]J connection context.

See Also: "Server-Side Considerations with Oracle-Specific Code
Generation" on page 3-32

= Do not rely on side effects in parameter expressions when values are returned
from the database. Oracle-specific code generation does not create temporary
variables for evaluation of OUT parameters, IN OUT parameters, SELECT INTO
variables, or return arguments on SQL statements.

For example, avoid statements such as the following:

#sgl { SELECT * FROM EMP INTO : (x[i++]), :(f_with_sideffect() [1++])
:(a.bl[i]) };

or:

#sqgl x[i++] = { VALUES f(:INOUT (x[i++]), :0UT (f_with_sideffect())) };

Evaluation of arguments is performed in place in the generated code. This may
result in different behavior than when evaluation is according to ISO SQL]
standards.

See Also: "Evaluation of Java Expressions at Run Time" on page 4-17
and "Examples of Evaluation of Java Expressions at Run Time (ISO
Code Generation)" on page 4-18

= Type maps for Oracle object functionality assumes that the corresponding Java
classes implement the java.sql.SQLData interface, given that
JPublisher-generated Java classes do not otherwise require a type map. If you use
type maps for Oracle object functionality, then your iterator declarations and
connection context declarations must specify the same type maps. Specify this
through the with clause.

For example, if you declare a connection context class as follows:

#sqgl context TypeMapContext with (typeMap="MyTypeMap");

and you populate an iterator instance from a SQL] statement that uses an instance
of this connection context class, as follows:
TypeMapContext tmc = new TypeMapContext(...);

MyIterator it;
#sqgl [tmc] it = (SELECT pers, addr FROM tab WHERE ...);

then the iterator declaration is required to have specified the same type map, as
follows:

#sqgl iterator MylIterator with (typeMap="MyTypeMap")
(Person pers, Address addr);

See Also: "Custom Java Class Requirements" on page 6-8 and
"Declaration WITH Clause" on page 4-4

3-30 Oracle Database SQLJ Developer’'s Guide and Reference

Oracle-Specific Code Generation (No Profiles)

Note: The reason for this restriction is that with Oracle-specific
code generation, all iterator getter methods are fully generated as
Oracle JDBC calls during translation. To generate the proper calls,
the SQLJ translator must know whether an iterator will be used
with a particular type map.

SQLJ Usage Changes with Oracle-Specific Code Generation

Some options that were previously available only as Oracle customizer options are
useful with Oracle-specific code generation as well. Because profile customization is
not applicable with Oracle-specific code generation, these options have been made
available through other means.

To alter the statement cache size or disable statement caching when generating
Oracle-specific code, use method calls in your code instead of using the customizer
stmtcache option. The sgqlj.runtime.ref.DefaultContext class, as well as
any connection context class you declare, now has the following static methods:

m setDefaultStmtCacheSize (int)
s int getDefaultStmtCacheSize ()
It also has the following instance methods:
m setStmtCacheSize(int)

m int getStmtCacheSize()

By default, statement caching is enabled.

See Also: "Statement Caching" on page 10-3

In addition, the following options are available as front-end Oracle SQL]J translator
options as well as Oracle customizer options:

s -optcols: Enable iterator column type and size definitions to optimize
performance.
s -optparams: Enable parameter size definitions to optimize JDBC resource

allocation. This option is used in conjunction with optparamdefaults.

s -optparamdefaults: Set parameter size defaults for particular data types. This
option is used in conjunction with optparams.

» -fixedchar: Enable CHAR comparisons with blank padding for WHERE clauses.
See Also: "Options for Code Generation, Optimizations, and CHAR
Comparisons" on page 8-40

Be aware of the following;:

= Use the -optcols option only if you are using online semantics-checking, where
you have used the SQL]J translator ~user, -password, and -url options
appropriately to request a database connection during translation.

» The functionality of the —optcols, -optparams, and -optparamdefaults
options, including default values, is the same as for the corresponding customizer
options.

Key Programming Considerations 3-31

Requirements and Restrictions for Naming

Server-Side Considerations with Oracle-Specific Code Generation

Consider the following if your SQL] code will run in the server:

The server-side SQLJ translator no longer supports ISO standard generated code.
SQLJ source code that is loaded into the server and compiled there will always be
translated with the default -codegen=oracle setting.

Therefore, to use ISO standard generated code in the server, you must translate
and compile the SQL]J code on a client and then load the individual components
into the server.

See Also: "Translating SQLJ Source on a Client and Loading
Components" on page 11-5

The caution against mixing Oracle-specific generated code with ISO standard
generated code applies to server-side Java code that calls a Java stored procedure
or stored function, even if the stored procedure is invoked through a PL/SQL
wrapper. This constitutes a recursive call-in. By default, the ExecutionContext
object is shared by both the calling module and the called module. Therefore, both
modules should be translated with the same -codegen setting.

If you want to ensure interoperability with code that has been translated with ISO
standard code generation, then it is advisable to explicitly instantiate execution
context instances, as in the following example:

public static method() throws SQLException
{
Execution Context ec = new ExecutionContext();
try {
#sql [ec] { SQL operation };

} finally { ec.close(); }

Note: To avoid resource leakage when using an explicit
ExecutionContext instance, ensure that you use the close ()
method, as shown in this example.

See Also: "Code Considerations and Limitations with
Oracle-Specific Code Generation" on page 3-29

Requirements and Restrictions for Naming

There are four areas to consider in discussing naming requirements, naming
restrictions, and reserved words:

The Java namespace, including additional restrictions imposed by SQL]J on the
naming of local variables and classes

The SQLJ namespace
The SQL namespace

Source file names

This section covers the following topics:

3-32 Oracle Database SQLJ Developer’'s Guide and Reference

Requirements and Restrictions for Naming

= Java Namespace: Local Variable and Class Naming Restrictions
= SQLJ Namespace
= SQL Namespace

s File Name Requirements and Restrictions

Java Namespace: Local Variable and Class Naming Restrictions

The Java namespace applies to all standard Java statements and declarations,
including the naming of Java classes and local variables. All standard Java naming
restrictions apply, and you should avoid the use of Java reserved words.

In addition, SQL]J places minor restrictions on the naming of local variables and
classes.

Note: Naming restrictions particular to host variables are
discussed in "Restrictions on Host Expressions" on page 4-24.

Local Variable Naming Restrictions

Some of the functionality of the SQLJ translator results in minor restrictions in naming
local variables. The SQLJ translator replaces each SQL]J executable statement with a
statement block, where the SQL]J executable statement is of the standard syntax:

#sgl { SQL operation };
SQL]J may use temporary variable declarations within a generated statement block.
The name of any such temporary variables will include the following prefix:

sdT_

Note: There are two underscores at the beginning and one at the end.

The following declarations are examples of those that might occur in a SQL]J-generated
statement block:

int _ sJT index;
Object __sJT_key;
java.sql.PreparedStatement _ sJT stmt;

The string _ sJT__is a reserved prefix for SQLJ-generated variable names. SQL]J
programmers must not use this string as a prefix for the following:

s Names of variables declared in blocks that include executable SQL statements
= Names of parameters to methods that contain executable SQL statements

s Names of fields in classes that contain executable SQL statements, or whose
subclasses or enclosed classes contain executable SQL statements

Class Naming Restrictions
Be aware of the following minor restrictions in naming classes in SQL]J applications:

= You must not declare class names that may conflict with SQL]J internal classes. In
particular, a top-level class cannot have a name of the following form, where a is
the name of an existing class in the SQLJ application:

Key Programming Considerations 3-33

Requirements and Restrictions for Naming

a_SJdb

where, a and b are legal Java identifiers.

For example, if your application class is Foo in file Foo . sql3j, then SQLJ
generates a profile-keys class called Foo_SJProfileKeys. Do not declare a class
name that conflicts with this.

= A class containing SQL] executable statements must not have a name that is the
same as the first component of the name of any package that includes a Java type
used in the application. Examples of class names to avoid are java, sgqlj, and
oracle (case-sensitive). As another example, if your SQL]J statements use host
variables whose type is abc . def .MyClass, then you cannot use abc as the name
of the class that uses these host variables.

To avoid this restriction, follow Java naming conventions recommending that
package names start in lowercase and class names start in uppercase.

SQLJ Namespace

The SQL]J namespace refers to #sgl class declarations and the portion of #sqgl
executable statements outside the curly braces.

Note: Restrictions particular to the naming of iterator columns are
discussed in "Using Named Iterators" on page 4-31.

Avoid using the following SQL] reserved words as class names for declared
connection context classes or iterator classes, in with or implements clauses, or in
iterator column type declaration lists:

m lterator
n context
n with

For example, do not have an iterator class or instance called iterator or a connection
context class or instance called context.

However, note that it is permissible to have a stored function return variable whose
name is any of these words.

SQL Namespace
The SQL namespace refers to the portion of a SQLJ executable statement inside the
curly braces. Normal SQL naming restrictions apply here.

See Also: Oracle Database SQL Reference

However, note that host expressions follow rules of the Java namespace, not the SQL
namespace. This applies to the name of a host variable and to everything between the
outer parentheses of a host expression.

File Name Requirements and Restrictions

SQLJ source files have the . sqglj file name extension. If the source file declares a
public class (maximum of one), then the base name of the file must match the name of
this class (case-sensitive). If the source file does not declare a public class, then the file

3-34 Oracle Database SQLJ Developer’'s Guide and Reference

Considerations for SQLJ in the Middle Tier

name must still be a legal Java identifier, and it is recommended that the file name
match the name of the first defined class.

For example, if you define the public class MySource in your source file, then your file
name must be:

MySource.sqlj

Note: These file naming requirements follow the Java Language
Specification (JLS) and are not SQLJ-specific. These requirements
do not directly apply in Oracle Database 11g, but it is still advisable
to adhere to them.

Considerations for SQLJ in the Middle Tier

There are special considerations if you run SQL]J in the middle tier, such as in an
Oracle9i Application Server Containers for J2EE (OC4J) environment.

The Oracle JDBC drivers provide Oracle-specific interfaces in the oracle. jdbc
package. The Oracle SQL]J libraries runtimel2.jar and runtimel2ee.jar make
full use of these interfaces, but these libraries are not compatible with Oracle JDBC
implementations prior to Oracle9i Application Server.

In Oracle9i Application Server, connections are established through data sources,
which typically return instances of the oracle. jdbc.0OracleConnection interface
instead of the older oracle. jdbc.driver.OracleConnection class. This is
necessary for certain connection functionality, such as distributed transactions (XA). To
support such features, connection objects must implement the new interface.

This has the following consequences, relevant in an Oracle9i Application Server
middle-tier environment, or any situation where data sources are used:

s For maximum portability and flexibility of your code, use
oracle.jdbc.OracleXXX types instead of
oracle.jdbc.driver.OracleXXX types.

= For custom Java types (typically for SQL objects and collections), implement
oracle.sqgl.ORAData instead of the deprecated oracle.sgl.CustomDatum
interface.

= Do not use the SQLJ runtime library. Use runtimel2 or runtimel2ee instead
(depending on your environment). The run time library is backward compatible
with older JDBC drivers, such as those in Oracle8i Database release 8.1.7, so
supports the oracle.jdbc.driver.OracleXXX types, not the
oracle.jdbc.OracleXXX types.

However, if you must use the runtime library for some reason, then set the
option -profile=false during translation. In this case, your program will not
use Oracle-specific customization and, therefore, will not fail if passed an
oracle. jdbc.OracleConnection instance instead of an
oracle.jdbc.driver.OracleConnection instance. In this circumstance,
Oracle-specific features will not be supported.

To facilitate management of connections obtained through data sources and
connection JavaBeans (for SQL]J JavaServer Pages), the Oracle SQL] implementation
provides a number of APIs in the runtimel2ee library.

For general information about SQL]J support for data sources and connection
JavaBeans, refer to the following sections:

Key Programming Considerations 3-35

Considerations for SQLJ in the Middle Tier

= "Standard Data Source Support" on page 7-9
s "SQLJ-Specific Data Sources" on page 7-11

= "SQLJ-Specific Connection JavaBeans for JavaServer Pages" on page 7-14

3-36 Oracle Database SQLJ Developer’'s Guide and Reference

4

Basic Language Features

SQLJ statements always begin with a #sgl token and can be broken into two main
categories:

Declarations: Used for creating Java classes for iterators, which is similar to Java
Database Connectivity (JDBC) result sets, or connection contexts, which is
designed to help you create strongly typed connections according to the sets of
SQL entities being used.

Executable statements: Used to execute embedded SQL operations.

This chapter discusses the following topics:

Overview of SQL]J Declarations

Overview of SQL]J Executable Statements

Java Host, Context, and Result Expressions
Single-Row Query Results: SELECT INTO Statements
Multirow Query Results: SQL] Iterators

Assignment Statements (SET)

Stored Procedure and Function Calls

Overview of SQLJ Declarations

A SQLJ declaration consists of the #sqgl token followed by the declaration of a class.
SQLJ declarations introduce specialized Java types into your application. There are
currently two kinds of SQL]J declarations, iterator declarations and connection context
declarations, defining Java classes as follows:

Iterator declarations define iterator classes. Iterators are conceptually similar to
JDBC result sets and are used to receive multi-row query data. An iterator is
implemented as an instance of an iterator class.

Connection context declarations define connection context classes. Each
connection context class is typically used for connections whose operations use a
particular set of SQL entities, such as tables, views, and stored procedures. That is
to say, instances of a particular connection context class are used to connect to
schemas that include SQL entities with the same names and characteristics. SQL]J
implements each database connection as an instance of a connection context class.

SQLJ includes the predefined sglj.runtime.DefaultContext connection
context class. If you only require one connection context class, then you can use
DefaultContext, which does not require a connection context declaration.

Basic Language Features 4-1

Overview of SQLJ Declarations

In any iterator or connection context declaration, you may optionally include the
following clauses:

s The implements clause: Specifies one or more interfaces that the generated class
will implement.

s The with clause: Specifies one or more initialized constants to be included in the
generated class.

This section covers the following topics:
s Rules for SQL] Declarations

» [terator Declarations

s Connection Context Declarations

» Declaration IMPLEMENTS Clause
» Declaration WITH Clause

Rules for SQLJ Declarations

SQLJ declarations are allowed in your SQL]J source code anywhere that a class
definition would be allowed in standard Java. For example:

SQLJ declaration; // OK (top level scope)

class Outer

{
SQLJ declaration; // OK (class level scope)

class Inner
{

SOLJ declaration; // OK (nested class scope)
}

void func()
{

SQLJ declaration; // OK (method block)
}

Note: As with standard Java, any public class should be declared
in one of the following ways:

= Declare it in a separate source file. The base name of the file
should be the same as the class name.

s Declare it at class-level scope or nested-class-level scope. In this
case, it may be advisable to use public static modifiers.

This is a requirement if you are using the standard javac compiler
provided with the Sun Microsystems JDK.

lterator Declarations

An iterator declaration creates a class that defines a kind of iterator for receiving query
data. The declaration will specify the column types of the iterator instances, which
must match the column types being selected from the database table.

4-2 Oracle Database SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

Basic iterator declarations use the following syntax:

#sql <modifiers> iterator iterator_classname (type declarations);

Modifiers are optional and can be any standard Java class modifiers, such as public,
static, and so on. Type declarations are separated by commas.

There are two categories of iterators, named iterators and positional iterators. For
named iterators, you must specify column names and types. For positional iterators,
you need to specify only types.

The following is an example of a named iterator declaration:

#sqgl public iterator EmpIter (String ename, double sal);

This statement results in the SQL]J translator creating a public EmpIter class with a
String attribute ename and a double attribute sal. You can use this iterator to
select data from a database table with corresponding employee name and salary
columns of matching names (ENAME and SAL) and data types (CHAR and NUMBER).

Declaring EmpIter as a positional iterator, instead of a named iterator, can be done as
follows:

#sqgl public iterator EmpIter (String, double);

See Also: "Multirow Query Results: SQL]J Iterators" on page 4-26

Connection Context Declarations

A connection context declaration creates a connection context class, whose instances
are typically used for database connections that use a particular set of SQL entities.
Basic connection context declarations use the following syntax:

#sql <modifiers> context context_classname;

As for iterator declarations, modifiers are optional and can be any standard Java class
modifiers. For example:

#sgl public context MyContext;

As a result of this statement, the SQL] translator creates a public MyContext class. In
your SQLJ code you can use instances of this class to create database connections to
schemas that include a desired set of entities, such as tables, views, and stored
procedures. Different instances of MyContext might be used to connect to different
schemas, but each schema might be expected, for example, to include an EMP table, a
DEPT table, and a TRANSFER_EMPLOYEE stored procedure.

Declared connection context classes are an advanced topic and are not necessary for
basic SQLJ applications that use only one interrelated set of SQL entities. In basic
scenarios, you can use multiple connections by creating multiple instances of the
sqlj.runtime.ref.DefaultContext class, which does not require any
connection context declarations.

See Also: "Connection Considerations” on page 3-4 and "Connection
Contexts" on page 7-1

Declaration IMPLEMENTS Clause

When you declare any iterator class or connection context class, you can specify one or
more interfaces to be implemented by the generated class.

Basic Language Features 4-3

Overview of SQLJ Declarations

Use the following syntax for an iterator class:

#sqgl <modifiers> iterator iterator_classname implements intfcl,..., intfcN
(type declarations);

The portion implements intfcl, ..., intfcNisknown asthe implements
clause. Note that in an iterator declaration, the implements clause precedes the
iterator type declarations.

Here is the syntax for a connection context declaration:

#sqgl <modifiers> context context_classname implements intfcl,..., intfcNl;

The implements clause is potentially useful in either an iterator declaration or a
connection context declaration, but is more likely to be useful in iterator declarations,
particularly in implementing the sqlj.runtime.Scrollable or
sqglj.runtime.ForUpdate interface. Scrollable iterators are supported in the Oracle
SQLJ implementation.

Note: The SQLJ implements clause corresponds to the Java
implements clause.

The following example uses an implements clause in declaring a named iterator
class. Presume you have created a package, mypackage, that includes an iterator
interface, M\yIterIntfc.

#sgl public iterator MyIter implements mypackage.MyIterIntfc
(String ename, int empno);

The declared class MyIter will implement the mypackage.MyIterIntfc interface.

The following example declares a connection context class that implements an
interface named MyConnCtxtIntfc. Presume that it is in the package mypackage.

#sgl public context MyContext implements mypackage.MyConnCtxtIntfc;

See Also: "Using the IMPLEMENTS Clause in Iterator Declarations"
on page 7-28 and "Using the IMPLEMENTS Clause in Connection
Context Declarations" on page 7-8

Declaration WITH Clause

In declaring a connection context class or iterator class, you can use a with clause to
specify and initialize one or more constants to be included in the definition of the
generated class. Most of this usage is standard, although Oracle implementation adds
some extended functionality for iterator declarations.

This section covers the following topics:
» Standard WITH Clause Usage
= Oracle-Specific WITH Clause Usage

= Example: Returnability

Standard WITH Clause Usage

In using a with clause, the constants that are produced are always public static
final. Use the following syntax for an iterator class:

4-4 Oracle Database SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

#sql <modifiers> iterator iterator_classname with (varl=valuel,..., varN=valueN)
(type declarations);

The portionwith (vari=valuel, ..., varN=valueN)isthe with clause. Note
that in an iterator declaration, the with clause precedes the iterator type declarations.

Where there is both a with clause and an implements clause, the implements
clause must come first. Note that parentheses are used to enclose with lists, but not
implements lists.

Here is the syntax for a connection context declaration that uses a with clause:

#sqgl <modifiers> context context_classname with (varl=valuel,..., varN=valueNl);

Note: A predefined set of standard SQLJ constants can be defined
in a with clause. However, not all of these constants are
meaningful to Oracle Database 11¢ or to the Oracle SQLJ run time.

Attempts to define constants other than the standard constants is
legal with Oracle Database 11g, but might not be portable to other
SQLJ implementations and will generate a warning if you have the
-warn=portable flag enabled. For information about this flag,
refer to "Translator Warnings (-warn)" on page 8-33.

Supported WITH Clause Constants

The Oracle SQLJ implementation supports the following standard constants in
connection context declarations:

= typeMap: a String literal defining the name of a type map properties resource

Oracle also supports the use of typeMap in iterator declarations.

See Also: "Oracle-Specific WITH Clause Usage" on page 4-6

= dataSource:a String literal defining the name under which a data source is
looked up in the InitialContext

See Also: "Standard Data Source Support" on page 7-9

The Oracle SQL] implementation supports the following standard constants in iterator
declarations:

m sensitivity: SENSITIVE/ASENSITIVE/INSENSITIVE, to define the
sensitivity of a scrollable iterator

See Also: "Scrollable Iterator Sensitivity" on page 7-30

m returnability: true/false, to define whether an iterator can be returned
from a Java stored procedure or function

See Also: "Example: Returnability" on page 4-7

Unsupported WITH Clause Constants

If you have SQL]J code that uses these constants, then they will not cause an error but
will result in no operation. The Oracle SQLJ implementation does not support the
following standard constants in connection context declarations:

Basic Language Features 4-5

Overview of SQLJ Declarations

s path:a String literal defining the name of a path to be prepended for resolution
of Java stored procedures and functions

s transformGroup: a String literal defining the name of a SQL transformation
group that can be applied to SQL types

The Oracle SQL]J implementation does not support the following standard constants,
involving cursor states, in iterator declarations:

= holdability: true/false, determining cursor holdability

The concept of holdability is defined in the SQL specification. A cursor that is
holdable can, subject to application request, be kept open and positioned on the
current row even when a transaction is completed. Use of the cursor can then be
continued in the next transaction of the same SQL session, however, subject to
some limitations.

» updateColumns:a String literal containing a comma-delimited list of column
names

An iterator declaration having a with clause that specifies updateColumns must
also have an implements clause that specifies the sqlj.runtime.ForUpdate
interface. The Oracle SQLJ implementation enforces this, even though
updateColumns is currently unsupported.

The following is a sample connection context declaration using typeMap:

#sgl public context MyContext with (typeMap="MyPack.MyClass");

The declared class MyContext will define a String attribute typeMap that will be
public static final and initialized to the value MyPack.MyClass. This value is
the fully qualified class name of a ListResourceBundle implementation that

provides the mapping between SQL and Java types for statements executed on
instances of the MyContext class.

The following is a sample iterator declaration using sensitivity:

#sgl public iterator MyAsensitivelIter with (sensitivity=ASENSITIVE)

(String ename, int empno);
This declaration sets the cursor sensitivity to ASENSITIVE for the
MyAsensitiveIter named iterator class.
The following example uses both an implements clause and a with clause:
#sqgl public iterator MyScrollableIterator implements sqglj.runtime.Scrollable

with (holdability=true) (String ename, int empno);

This declaration implements the interface sqlj.runtime.Scrollable and enables
the cursor holdability for a named iterator class.

Note: holdability is currently not supported.

Oracle-Specific WITH Clause Usage

In addition to the standard with clause usage in a connection context declaration to
associate a type map with the connection context class, the Oracle SQL]
implementation enables you to use a with clause to associate a type map with the
iterator class in an iterator declaration. For example:

#sql iterator MyIterator with (typeMap="MyTypeMap") (Person pers, Address addr);

4-6 Oracle Database SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

If you use Oracle-specific code generation and use type maps in your application, then
your iterator and connection context declarations must use the same type maps.

See Also: "Code Considerations and Limitations with
Oracle-Specific Code Generation" on page 3-29

Example: Returnability

Use returnability=true in the with clause of a SQL]J iterator declaration to
specify that the iterator can be returned from a Java stored procedure to a SQL or
PL/SQL statement as a REF CURSOR. With the default returnability=false
setting, the iterator cannot be returned in this manner, and an attempt to do so will
result in a SQL exception at run time.

Create the following database table:

create table sgljRetTab(str varchar2(30));
insert into sgljRetTab values ('sgljRetTabCol');

Define the RefCursorSQLJ class in the RefCursorSQLJ . sglj source file as
follows. Note that the iterator type MyIter uses returnability=true.

public class RefCursorSQLJ

{
#sqgl static public iterator MylIter with (returnability=true) (String str);

static public MyIter sqgljUserRet() throws java.sql.SQLException
{
MyIter iter=null;
try {
#sgl iter = {select str from sgljRetTab};
} catch (java.sql.SQLException e)
{
e.printStackTrace();
throw e;
}
System.err.println("iter is " + iter);
return iter;

Load RefCursorsSQLJ . sglj into the Oracle Java virtual machine (JVM) inside the
database as follows:

% loadjava -u scott/tiger -r -f -v RefCursorSQLJ.sqglj

Invoke the Java stored procedure defined for the sqljUserRet () method:

create or replace package refcur_pkg as
type refcur_t is ref cursor;

end;

/

create or replace function sgljUserRet

return refcur_pkg.refcur_t as

language java

name 'RefCursorSQLJ.sgljUserRet () return

RefCursorSQLJ.MyIter';

/

select scott.sgljUserRet from dual;

Here is the result of the SELECT statement:

Basic Language Features 4-7

Overview of SQLJ Executable Statements

SQLJRET1

sgljRetTabCol

Overview of SQLJ Executable Statements

A SQLJ executable statement consists of the #sgl token followed by a SQLJ clause,
which uses syntax that follows a specified standard for embedding executable SQL
statements in Java code. The embedded SQL operation of a SQL] executable statement
can be any SQL operation supported by the JDBC driver.

This section covers the following topics:

Rules for SQLJ Executable Statements
SQLJ Clauses

Specifying Connection Context Instances and Execution Context Instances

Executable Statement Examples

PL/SQL Blocks in Executable Statements

Rules for SQLJ Executable Statements

A SQLJ executable statement must adhere to the following rules:

SQLJ Clauses

It is permitted in Java code wherever Java block statements are permitted. That is,
it is permitted inside method definitions and static initialization blocks.

Its embedded SQL operation must be enclosed in curly braces: { . . . }.

It must be terminated with a semi-colon (;).

Notes:

It is recommended that you do not close the SQL operation
with a semi-colon. The parser will detect the end of the
operation when it encounters the closing curly brace of the
SQLJ clause.

Everything inside the curly braces of a SQL]J executable
statement is treated as SQL syntax and must follow SQL rules,
with the exception of Java host expressions.

During offline parsing of SQL operations, all SQL syntax is
checked. However, during online semantics-checking only data
manipulation language (DML) operations can be parsed and
checked. Data definition language (DDL) operations,
transaction-control operations, or any other kinds of SQL
operations cannot be parsed and checked.

A SQLJ clause is the executable part of a statement, consisting of everything to the
right of the #sql token. This consists of embedded SQL inside curly braces, preceded
by a Java result expression if appropriate, such as result in the following example:

4-8 Oracle Database SQLJ Developer’'s Guide and Reference

Overview of SQLJ Executable Statements

#sql { SQL operation }; // For a statement with no output, like INSERT
#sql result = { SQL operation }; // For a statement with output, like SELECT

A clause without a result expression, such as in the first SQL] statement in the
example, is known as a statement clause. A clause that does have a result expression,
such as in the second SQLJ statement in the example, is known as an assignment
clause.

A result expression can be anything from a simple variable that takes a stored-function
return value to an iterator that takes several columns of data from a multi-row
SELECT, where the iterator can be an instance of an iterator class or subclass.

A SQL operation in a SQL]J statement can use standard SQL syntax only or can use a
clause with syntax specific to SQLJ.

Table 4-1 lists supported SQLJ statement clauses and Table 4-2 lists supported SQL]J
assignment clauses. The last two entries in Table 4-1 are general categories for
statement clauses that use standard SQL syntax or Oracle PL/SQL syntax, as opposed
to SQLJ-specific syntax.

Table 4-1 SQLJ Statement Clauses

Category Functionality More Information
SELECT INTO clause Select datainto Javahost "Single-Row Query Results: SELECT
expressions. INTO Statements" on page 4-24
FETCH clause Fetch data from a "Using Positional Iterators" on
positional iterator. page 4-34
COMMIT clause Commit changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 3-20
ROLLBACK clause Cancel changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 3-20
SAVEPOINT Set a savepoint for future "Using Savepoints" on page 3-21

RELEASE SAVEPOINT rollbacks, release a
ROLLBACK TO clauses specified savepoint, roll
back to a savepoint.

SET TRANSACTION Use advanced transaction "Advanced Transaction Control" on
clause control for access mode page 7-35
and isolation level.
Procedure clause Call a stored procedure. "Calling Stored Procedures” on
page 4-43
Assignment clause Assign values to Java host "Assignment Statements (SET)" on
expressions. page 4-41
SQL clause Use standard SQL syntax Oracle Database SQL Reference

and functionality: UPDATE,
INSERT, DELETE.

PL/SQL block Use BEGIN. . END or "PL/SQL Blocks in Executable
DECLARE. .BEGIN. .END Statements" on page 4-11

anonymous block inside Oracle Database PL/SQL User’s Guide
SQL]J statement.
and Reference

Basic Language Features 4-9

Overview of SQLJ Executable Statements

Table 4-2 SQLJ Assignment Clauses

Category Functionality More Information

Query clause Select data into a SQLJ "Multirow Query Results: SQLJ
iterator. Iterators” on page 4-26

Function clause Call a stored function. "Calling Stored Functions" on page 4-44

Iterator conversion Converta JDBC result set "Converting from Result Sets to Named

clause to a SQL]J iterator. or Positional Iterators" on page 7-41

Note: A SQLJ statement is referred to by the same name as the
clause that makes up the body of that statement. For example, an
executable statement consisting of #sqgl followed by a SELECT
INTO clause is referred to as a SELECT INTO statement.

Specifying Connection Context Instances and Execution Context Instances

If you have defined multiple database connections and want to specify a particular
connection context instance for an executable statement, then use the following syntax:

#sql [conn_context_instance] { SQL operation };

See Also: "Connection Considerations" on page 3-4

If you have defined one or more execution context instances of the
sqglj.runtime.ExecutionContext class and want to specify one of them for use
with an executable statement, then use the following syntax:

#sqgl [exec_context_instance]l { SQL operation };
You can use an execution context instance to provide status or control of the SQL
operation of a SQL]J executable statement. For example, you can use execution context

instances in multithreading situations where multiple operations are occurring on the
same connection.

See Also: "Execution Contexts" on page 7-17

You can also specify both a connection context instance and an execution context
instance:

#sqgl [conn_context_instance, exec_context_instance]l { SQL operation };

Notes:

= Include the square brackets around connection context
instances and execution context instances. They are part of the
syntax.

= If you specify both a connection context instance and an
execution context instance, then the connection context instance
must come first.

4-10 Oracle Database SQLJ Developer’'s Guide and Reference

Overview of SQLJ Executable Statements

Executable Statement Examples

This section provides examples of elementary SQLJ executable statements.

Elementary INSERT

The following example demonstrates a basic INSERT. The statement clause does not
require any syntax specific to SQLJ.

Consider an employee table EMP with the following rows:

CREATE TABLE EMP (
ENAME VARCHAR2 (10),
SAL NUMBER(7,2));

Use the following SQL] executable statement, which uses only standard SQL syntax, to
insert Joe as a new employee into the EMP table, specifying his name and salary:

#sgl { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

Elementary INSERT with Connection Context or Execution Context Instances

The following examples use ctx as a connection context instance, which is an instance
of either the default sqlj.runtime.ref.DefaultContext or a class that you have
previously declared in a connection context declaration, and execctx as an execution
context instance:

#sgl [ctx] { INSERT INTO emp (ename, sal) VALUES ('Joe’, 43000) };
#sqgl [execctx] { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

#sqgl [ctx, execctx] { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

A Simple SQLJ Method

This example demonstrates a simple method using SQL] code, demonstrating how
SQLJ statements interrelate with and are interspersed with Java statements. The SQL]
statement uses standard INSERT INTO table VALUES syntax supported by the
Oracle SQL implementation. The statement also uses Java host expressions, marked by
colons (:), to define the values. Host expressions are used to pass data between the Java
code and SQL instructions.

public static void writeSalesData (int[] itemNums, String[] itemNames)
throws SQLException
{
for (int 1 =0; 1 < itemNums.length; i++)
#sqgl { INSERT INTO sales VALUES(: (itemNums[i]), :(itemNames[i]), SYSDATE) };

Notes:
s The throws SQLException is required.

s SQLJ function calls also use a VALUES token, but these
situations are not related semantically.

PL/SQL Blocks in Executable Statements

PL/SQL blocks can be used within the curly braces of a SQL] executable statement just
as SQL operations can, as in the following example:

Basic Language Features 4-11

Java Host, Context, and Result Expressions

#sal {
DECLARE
n NUMBER;
BEGIN
n:=1;
WHILE n <= 100 LOOP
INSERT INTO emp (empno) VALUES (2000 + n);
n:=n+ 1;
END LOOP;
END
}i

This example goes through a loop that inserts new employees in the emp table,
creating employee numbers 2001 through 2100. It presumes data other than the
employee number will be filled in later.

Simple PL/SQL blocks can also be coded in a single line as follows:
#sql { <DECLARE ...> BEGIN ... END; };
Using PL/SQL anonymous blocks within SQL]J statements is one way to use dynamic

SQL in your application. You can also use dynamic SQL directly through SQL]J
extensions provided by Oracle or through JDBC code within a SQL]J application.

See Also: "Support for Dynamic SQL" on page 7-44 and "SQL]J and
JDBC Interoperability" on page 7-37

Note: Remember that using PL/SQL in your SQL]J code would
prevent portability to other platforms, because PL/SQL is
Oracle-specific.

Java Host, Context, and Result Expressions

This section discusses three categories of Java expressions used in SQLJ code: host
expressions, context expressions, and result expressions. Host expressions are the most
frequently used Java expressions. Another category of expressions, called meta bind
expressions, are used specifically for dynamic SQL operations and use syntax similar
to that of host expressions.

See Also: "Support for Dynamic SQL" on page 7-44

SQLJ uses Java host expressions to pass arguments between Java code and SQL
operations. This is how you pass information between Java and SQL. Host expressions
are interspersed within the embedded SQL operations in the SQL]J source code.

The most basic kind of host expression, consisting of only a Java identifier, is referred
to as a host variable. A context expression specifies a connection context instance or
execution context instance to be used for a SQL]J statement. A result expression
specifies an output variable for query results or a function return.

This section covers the following topics:
s Overview of Host Expressions

» Basic Host Expression Syntax

» Examples of Host Expressions

s Overview of Result Expressions and Context Expressions

4-12 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

= Evaluation of Java Expressions at Run Time
= Examples of Evaluation of Java Expressions at Run Time (ISO Code Generation)

» Restrictions on Host Expressions

Overview of Host Expressions

Any valid Java expression can be used as a host expression. In the simplest case, the
expression consists of just a single Java variable. Other kinds of host expressions
include the following:

= Arithmetic expressions

» Java method calls with return values

= Java class field values

= Array elements

= Conditional expressions (a ? b : <)
= Logical expressions

= Bitwise expressions

Java identifiers used as host variables or in host expressions can represent any of the
following:

» Local variables

s Declared parameters

n Class fields

» Static or instance method calls

Local variables used in host expressions can be declared anywhere that other Java
variables can be declared. Fields can be inherited from a superclass.

Java variables that are legal in the Java scope where the SQL]J executable statement
appears can be used in a host expression in a SQL statement, presuming its type is
convertible to or from a SQL data type. Host expressions can be input, output, or
input-output.

See Also: "Supported Types for Host Expressions" on page 5-1

Basic Host Expression Syntax

A host expression is preceded by a colon (:). If the desired mode of the host expression
is not the default, then the colon must be followed by IN, OUT, or INOUT, as
appropriate, before the host expression itself. These are referred to as mode specifiers.
The default is OUT if the host expression is part of an INTO-list or is the assignment
expression in a SET statement. Otherwise, the default is IN. Any OUT or INOUT host
expression must be assignable.

Note: When using the default, you can still include the mode
specifier if desired.

The SQL code that surrounds a host expression can use any vendor-specific SQL
syntax. Therefore, no assumptions can be made about the syntax when parsing the
SQL operations and determining the host expressions. To avoid any possible

Basic Language Features 4-13

Java Host, Context, and Result Expressions

ambiguity, any host expression that is not a simple host variable (in other words, that
is more complex than a non-dotted Java identifier) must be enclosed in parentheses.

To summarize the basic syntax:

For a simple host variable without a mode specifier, put the host variable after the
colon, as in the following example:

:hostvar

For a simple host variable with a mode specifier, put the mode specifier after the
colon and put white space (space, tab, newline, or comment) between the mode
specifier and the host variable, as in the following example:

: INOUT hostvar

The white space is required to distinguish between the mode specifier and the
variable name.

For any other host expression, enclose the expression in parentheses and place it
after the mode specifier or after the colon, if there is no mode specifier, as in the
following examples:

:IN (hostvarl+hostvar2)
: (hostvar3*hostvard)
: (index--)

White space is not required after the mode specifier in this example, because the
parenthesis is a suitable separator. However, a white space after the mode specifier
is allowed.

An outer set of parentheses is needed even if the expression already starts with a
begin-parenthesis, as in the following examples:

:((x+y) .2)
: (((y)x) .myOutput ())

Syntax Notes
Keep the following in mind regarding the host expression syntax:

White space is always allowed after the colon as well as after the mode specifier.
Wherever white space is allowed, you can also have a comment.

You can have any of the following in the SQL namespace:
- SQL comments after the colon and before the mode specifier

- SQL comments after the colon and before the host expression if there is no
mode specifier

- SQL comments after the mode specifier and before the host expression
You can have the following in the Java namespace:
- Java comments within the host expression (inside the parentheses)

The IN, OUT, and INOUT syntax used for host variables and expressions are not
case-sensitive. These tokens can be in uppercase, lowercase, or mixed.

Do not confuse the IN, OUT, and INOUT syntax of SQL]J host expressions with
similar IN, OUT, and IN OUT syntax used in PL/SQL declarations to specify the
mode of parameters passed to PL/SQL stored functions and procedures.

4-14 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

Usage Notes
Keep the following in mind regarding the usage of host expressions:

= A simple host variable can appear multiple times in the same SQL] statement, as
follows:

— If the host variable appears only as an input variable, then there are no
restrictions or complications.

- If at least one appearance of the host variable is as an output variable in a
PL/SQL block, then you will receive a portability warning if the translator
-warn=portability flag is set. SQLJ run-time behavior in this situation is
vendor-specific. The Oracle SQL]J run time uses value semantics, as opposed to
reference semantics, for all occurrences of the host variable.

— If at least one appearance of the host variable is as an output variable in a
stored procedure call, stored function call, SET statement, or INTO-list, then
you will not receive any warning. SQLJ run-time behavior in this situation is
standardized, using value semantics.

Note: The term output refers to OUT or INOUT variables, as
applicable.

s If a host expression that is a simple host variable appears multiple times in a SQLJ
statement, then by default each appearance is treated completely independently of
the other appearances, using value semantics. However, if you use the SQLJ
translator -bind-by-identifier=true setting, then this is not the case. With a
true setting, multiple appearances of the same host variable in a given SQL]J
statement or PL/SQL block are treated as a single bind occurrence.

See Also: "Binding Host Expressions by Identifier
(-bind-by-identifier)" on page 8-55

s When binding a string host expression into a WHERE clause for comparison against
CHAR data, be aware that there is a SQL]J option, -fixedchar, that accounts for
blank padding in the CHAR column when the comparison is made.

See Also: "CHAR Comparisons with Blank Padding (-fixedchar)" on
page 8-46

Examples of Host Expressions
The following examples will help clarify the preceding syntax discussion.

Note: Some of these examples use SELECT INTO statements, which
are described in "Single-Row Query Results: SELECT INTO
Statements" on page 4-24.

Example 1

In this example, two input host variables are used, one as a test value for a WHERE
clause and one to contain new data to be sent to the database.

Presume you have a database employee table emp with an ename column for
employee names and a sal column for employee salaries. The relevant Java code that
defines the host variables is as follows:

Basic Language Features 4-15

Java Host, Context, and Result Expressions

String empname = "SMITH";
double salary = 25000.0;

#sqgl { UPDATE emp SET sal = :salary WHERE ename = :empname };

IN is the default, but you can state it explicitly as well:

#sgl { UPDATE emp SET sal = :IN salary WHERE ename = :IN empname };

As you can see, the colon (:) can immediately precede the variable when not using the
IN token, but : IN must be followed by white space before the host variable.

Example 2
This example uses an output host variable in a SELECT INTO statement, where you
want to find out the name of the employee whose employee number 28959.

String empname;
#sqgl { SELECT ename INTO :empname FROM emp WHERE empno = 28959 };

OUT is the default for an INTO-list, but you can state it explicitly as well:

#sql { SELECT ename INTO :0UT empname FROM emp WHERE empno = 28959 };

This statement looks in the empno column of the emp table for employee number
28959, selects the name in the ename column of that row, and outputs it to the
empname output host variable, which is a Java String.

Example 3

This example uses an arithmetic expression as an input host expression. The Java
variables balance and minPmtRatio are multiplied, and the result is used to update
the minPayment column of the creditacct table for account number 537845.

float balance = 12500.0;
float minPmtRatio = 0.05;

#sqgl { UPDATE creditacct SET minPayment = :(balance * minPmtRatio)
WHERE acctnum = 537845 };

Alternatively, to use the IN token:

#sqgl { UPDATE creditacct SET minPayment = :IN (balance * minPmtRatio)
WHERE acctnum = 537845 };

Example 4

This example shows the use of the output of a method call as an input host expression
and also uses an input host variable. This statement uses the value returned by
getNewsSal () to update the sal column in the emp table for the employee who is
specified by the Java empname variable. Java code initializing the host variables is also
shown.

String empname = "SMITH";
double raise = 0.1;

#sqgl {UPDATE emp SET sal = :(getNewSal (raise, empname))
WHERE ename = :empname};

4-16 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

Overview of Result Expressions and Context Expressions

A context expression is an input expression that specifies the name of a connection
context instance or an execution context instance to be used in a SQLJ executable
statement. Any legal Java expression that yields such a name can be used.

A result expression is an output expression used for query results or a function return.
It can be any legal Java expression that is assignable, meaning that it can logically
appear on the left side of an equals sign. This is sometimes referred to as an l-value.

The following examples can be used for either result expressions or context
expressions:

s Local variables

s Declared parameters
s Class fields

= Array elements

Result expressions and context expressions appear lexically in the SQLJ space, unlike
host expressions, which appear lexically in the SQL space, that is, inside the curly
brackets of a SQLJ executable statement. Therefore, a result expression or context
expression must not be preceded by a colon.

Evaluation of Java Expressions at Run Time

This section discusses the evaluation of Java host expressions, connection context
expressions, execution context expressions, and result expressions when your
application executes.

Following is a simplified representation of a SQLJ executable statement that uses all
these kinds of expressions:

#sqgl [connctxt_exp, execctxt_exp] result_exp = { SQL with host expression };

Java expressions can be used as any of the following, as appropriate:

= Connection context expression: Evaluated to specify the connection context
instance to be used

= Execution context expression: Evaluated to specify the execution context instance
to be used

= Result expression: To receive results, for example, from a stored function
s Host expression

For ISO standard code generation, the evaluation of Java expressions is well-defined,
even for the use of any side effects that depend on the order in which expressions are
evaluated.

For Oracle-specific code generation, evaluation of Java expressions follows the ISO
standard when there are no side effects, except when the -bind-by-identifier
option is enabled, but is implementation-specific and subject to change when there are
side effects.

Note: The following discussion and the related examples later do
not apply to Oracle-specific code generation. If you use side effects
as described here, then request ISO code generation during
translation.

Basic Language Features 4-17

Java Host, Context, and Result Expressions

The following is a summary, for ISO code, of the overall order of evaluation, execution,
and assignment of Java expressions for each statement that executes during run time.

1. If there is a connection context expression, then it is evaluated immediately, before
any other Java expressions are evaluated.

2, If there is an execution context expression, then it is evaluated after any connection
context expression, but before any result expression.

3. If there is a result expression, then it is evaluated after any context expressions, but
before any host expressions.

4. After evaluation of any context or result expressions, host expressions are
evaluated from left to right as they appear in the SQL operation. As each host
expression is encountered and evaluated, its value is saved to be passed to SQL.

Each host expression is evaluated once and only once.
5. INand INOUT parameters are passed to SQL, and the SQL operation is executed.

6. After execution of the SQL operation, the output parameters, Java OUT and INOUT
host expressions, are assigned output in order from left to right as they appear in
the SQL operation.

Each output host expression is assigned once and only once.

7. The result expression, if there is one, is assigned output last.

Note: Host expressions inside a PL/SQL block are all evaluated
together before any statements within the block are executed. They
are evaluated in the order in which they appear, regardless of the
control flow within the block.

Once the expressions in a statement have been evaluated, input and input-output host
expressions are passed to SQL, and then the SQL operation is executed. After
execution of the SQL operation, assignments are made to Java output host expressions,
input-output host expressions, and result expressions as follows:

1. OUT and INOUT host expressions are assigned output in order from left to right.
2. The result expression, if there is one, is assigned output last.

Note that during run time, all host expressions are treated as distinct values, even if
they share the same name or reference the same object. The execution of each SQL
operation is treated as if invoking a remote method, and each host expression is taken
as a distinct parameter. Each input or input-output parameter is evaluated and passed
as it is first encountered, before any output assignments are made for that statement,
and each output parameter is also taken as distinct and is assigned exactly once.

It is also important to remember that each host expression is evaluated only once. An
INOUT expression is evaluated when it is first encountered. When the output
assignment is made, the expression itself is not re-evaluated nor are any side-effects
repeated.

Examples of Evaluation of Java Expressions at Run Time (ISO Code Generation)

This section discusses, for ISO code generation, how Java expressions are evaluated
when your application executes.

4-18 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

Note: Do not count on these effects if you use Oracle-specific code
generation. Request ISO code generation during translation if you
depend on such effects.

Evaluation of Prefix and Postfix Operators

When a Java expression contains a Java postfix increment or decrement operator, the
incrementing or decrementing occurs after the expression has been evaluated.
Similarly, when a Java expression contains a Java prefix increment or decrement
operator, the incrementing or decrementing occurs before the expression is evaluated.
This is equivalent to how these operators are handled in standard Java code.

The following is an example of postfix operator:
int indx = 1;

#sqgql { ... :0UT (arrayl[indx]) ... :IN (indx++) ... };

This example is evaluated as follows:

#sqgql { ... :0UT (array[l]) ... :IN (1) ... };

The indx variable is incremented to 2 and will have that value the next time it is
encountered, but not until after : IN (indx++) has been evaluated.

The following is the example of postfix operator:

int indx = 1;
#sqgl { ... :0UT (array[indx++]) ... :IN (indx++) ... };

This example is evaluated as follows:
#sql { ... :0UT (array[l]) ... :IN (2) ... };
The variable indx is incremented to 2 after the first expression is evaluated, but before

the second expression is evaluated. It is incremented to 3 after the second expression is
evaluated and will have that value the next time it is encountered.

The following example consists of both prefix and postfix operators:
int indx = 1;

#sqgl { ... :0UT (array[++indx]) ... :IN (indx++) ... };

This example is evaluated as follows:
#sqgl { ... :0UT (arrayl[2]) ... :IN (2) ... };
The variable indx is incremented to 2 before the first expression is evaluated. It is

incremented to 3 after the second expression is evaluated and will have that value the
next time it is encountered.

Evaluation Order of IN, INOUT, and OUT Host Expressions

Host expressions are evaluated from left to right. Whether an expression is IN, INOUT,
or OUT makes no difference when it is evaluated. All that matters is its position in the
left-to-right order.

Consider the following example:

int[5] arry;

Basic Language Features 4-19

Java Host, Context, and Result Expressions

int n = 0;
#sqgl { SET :0UT (arry[n]) = :(++n) };

This example is evaluated as follows:

#sqgql { SET :0UT (arry([0]) =1 };

One might expect input expressions to be evaluated before output expressions, but
that is not the case. The expression : OUT (arry[n]) is evaluated first because it is
the left-most expression. Then n is incremented prior to evaluation of ++n, because it
is being operated on by a prefix operator. Then ++n is evaluated as 1. The result will be
assigned to arry[0], not arry[1], because 0 was the value of n when it was
originally encountered.

Expressions in PL/SQL Blocks Are Evaluated Before Statements Are Executed

Host expressions in a PL/SQL block are all evaluated in one sequence, before any have
been executed. Consider the following example:

int x=3;

int z=5;

#sgl { BEGIN :0UT x := 10; :0UT z := :x; END };
System.out.println("x=" + x + ", z=" + z);

This example is evaluated as follows:

#sgl { BEGIN :0UT x := 10; :0UT z := 3; END };

Therefore, it would print x=10, z=3.

All expressions in a PL/SQL block are evaluated before any are executed. In this
example, the host expressions in the second statement, : OUT z and :x, are
evaluated before the first statement is executed. In particular, the second statement is
evaluated while x still has its original value of 3, before it has been assigned the value
10.

Consider another example of how expressions are evaluated within a PL/SQL block:
int x=1, y=4, z=3;
#sqgql { BEGIN

:0UT x := :(y++) + 1;

:0UT z
END };

1]
:pé

This example is evaluated as follows:

#sqgql { BEGIN
:OUT x := 4 + 1;
:0UT z := 1;
END };

The postfix increment operator is executed after : (y++) is evaluated, so the
expression is evaluated as 4, which is the initial value of y. The second statement,
:0UT z := :x,isevaluated before the first statement is executed. Therefore, x still
has its initialized value of 1. After execution of this block, x will have the value 5 and
z will have the value 1.

4-20 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

The following example demonstrates the difference between two statements appearing
in a PL/SQL block in one SQL]J executable statement, and the same statements
appearing in separate (consecutive) SQL]J executable statements.

First, consider the following, where two statements are in a PL/SQL block.
int y=1;
#sqgl { BEGIN :0UT y := :y + 1; :0UT X := :y + 1; END };

This example is evaluated as follows:
#sqgql { BEGIN :0UT y := 1 + 1; :0UT x := 1 + 1; END };
The :v in the second statement is evaluated before either statement is executed.

Therefore, y has not yet received its output from the first statement. After execution of
this block, both x and y have the value 2.

Now, consider the situation where the same two statements are in PL/SQL blocks in
separate SQL]J executable statements.

int y=1;
#sgql { BEGIN :0UT y := :y + 1; END };
#sgql { BEGIN :0UT x := :y + 1; END };

The first statement is evaluated as follows:

#sqgql { BEGIN :0UT y := 1 + 1; END };

Then, it is executed and y is assigned the value 2.
After execution of the first statement, the second statement is evaluated as follows:

#sgl { BEGIN :0UT x := 2 + 1; END };

This time, as opposed to the previous PL/SQL block example, y has already received
the value 2 from execution of the previous statement. Therefore, x is assigned the
value 3 after execution of the second statement.

Expressions in PL/SQL Blocks Are Always Evaluated Once Only

Each host expression is evaluated once, and only once, regardless of program flow and
logic.

Consider the following example of evaluation of host expression in a loop:

int count = 0;
#sagl {
DECLARE
n NUMBER
BEGIN
n:=1;
WHILE n <= 100 LOOP
:IN (count++);
n:=n+ 1;
END LOOP;
END
}i

The Java count variable will have the value 0 when it is passed to SQL, because it is

operated on by a postfix operator, as opposed to a prefix operator. It will then be
incremented to 1 and will hold that value throughout execution of this PL/SQL block.

Basic Language Features 4-21

Java Host, Context, and Result Expressions

It is evaluated only once as the SQL]J executable statement is parsed and then is
replaced by the value 1 prior to SQL execution.

Consider the following example that illustrates the evaluation of host expressions in
conditional blocks. This example demonstrates how each expression is always
evaluated, regardless of the program flow. As the block is executed, only one branch of
the IF...THEN. . . ELSE construct can be executed. However, before the block is
executed, all expressions in the block are evaluated in the order that the statements

appear.
int x;
(operations on x)
#sqgl |
DECLARE
n NUMBER
BEGIN
n := :X;
IF n < 10 THEN
n = :(X++);
ELSE
n:= :x * :x;
END LOOP;
END
}i

Say the operations performed on x resulted in x having a value of 15. When the
PL/SQL block is executed, the EL.SE branch will be executed and the IF branch will
not. However, all expressions in the PL/SQL block are evaluated before execution,
regardless of program logic or flow. Therefore, x++ is evaluated, then x is
incremented, and then each x is evaluated in the (x * x) expression. The
IF...THEN. . .ELSE block is evaluated as follows:

IF n < 10 THEN

n := 15;
ELSE

n := :16 * :16;
END LOOP;

After execution of this block, given an initial value of 15 for x, n will have the value
256.

Output Host Expressions Are Assigned Left to Right, Before Result Expression
Remember that OUT and INOUT host expressions are assigned in order from left to
right, and then the result expression, if any, is assigned last. If the same variable is
assigned more than once, then it will be overwritten according to this order, with the
last assignment taking precedence.

The following example contains multiple output host expressions referencing the same
variable:

#sqgql { CALL foo(:0UT x, :0UT x) };
If foo () outputs the values 2 and 3, respectively, then x will have the value 3 after

the SQL]J executable statement has finished executing. The right-hand assignment will
be performed last, thereby taking precedence.

The following example contains multiple output host expressions referencing the same
object:

4-22 Oracle Database SQLJ Developer’'s Guide and Reference

Java Host, Context, and Result Expressions

MyClass x = new MyClass();
MyClass y = X;

#sqgl { ... :0UT (x.field):=1 ... :0UT (y.field):=2 ... };

After execution of the SQLJ executable statement, x. field will have a value of 2, and
not 1, because x is the same object as y, and field was assigned the value of 2 after it
was assigned the value of 1.

The following example demonstrates the difference between having the output results
of a function assigned to a result expression and having the results assigned to an OUT
host expression. Consider the following function, with the invar input parameter, the
outvar output parameter, and a return value:

CREATE FUNCTION fn(invar NUMBER, outvar OUT NUMBER)
RETURN NUMBER AS BEGIN

outvar := invar + invar;
return (invar * invar);
END fn;

Now consider an example where the output of the function is assigned to a result
expression:

int x = 3;
#sqgql x = { VALUES(fn(:x, :0UT x)) };

The function will take 3 as the input, will calculate 6 as the output, and will return 9.
After execution, the : OUT x will be assigned first, giving x a value of 6. But finally the
result expression is assigned, giving x the return value of 9 and overwriting the value
of 6 previously assigned to x. So x will have the value 9 the next time it is
encountered.

Now consider an example where the output of the function is assigned to an OUT host
variable instead of a result expression:

int x = 3;
#sgl { BEGIN :0UT x := fn(:x, :0UT x); END };

In this case, there is no result expression and the OUT variables are simply assigned left
to right. After execution, the first : OUT x, on the left side of the equation, is assigned
first, giving x the function return value of 9. However, proceeding left to right, the
second : OUT x, on the right side of the equation, is assigned last, giving x the output
value of 6 and overwriting the value of 9 previously assigned to x. Therefore, x will
have the value 6 the next time it is encountered.

Note: Some unlikely cases have been used in these examples to
explain the concepts of how host expressions are evaluated. In
practice, it is not advisable to use the same variable in both an OUT
or INOUT host expression or in an IN host expression inside a
single statement or PL/SQL block. The behavior in such cases is
well defined in the Oracle SQL] implementation, but this practice is
not covered in the SQLJ specification. Therefore, code written in
this manner will not be portable. Such code will generate a warning
from the SQLJ translator if the portable flag is set during
semantics-checking.

Basic Language Features 4-23

Single-Row Query Results: SELECT INTO Statements

Restrictions on Host Expressions

Do not use in, out, and inout as identifiers in host expressions unless they are
enclosed in parentheses. Otherwise, they might be mistaken for mode specifiers. This
is not case-sensitive.

For example, you could use an input host variable called in, as follows:

: (in)

or:

:IN(in)

Single-Row Query Results: SELECT INTO Statements

When only a single row of data is being returned, SQLJ enables you to assign selected
items directly to Java host expressions inside SQL syntax. This is done using the
SELECT INTO statement. This section covers the following topics:

s SELECT INTO Syntax

= Examples of SELECT INTO Statements

= Examples with Host Expressions in SELECT-List
s SELECT INTO Error Conditions

SELECT INTO Syntax
The syntax for a SELECT INTO statement is as follows:

#sqgl { SELECT expressionl, ..., expressionN INTO :host_expl,..., :host_expN
FROM table <optional_clauses> };

Keep in mind the following:

» Theitems expressionl through expressionl are expressions specifying what
is to be selected from the database. These can be any expressions valid for any
SELECT statement. This list of expressions is referred to as the SELECT-list. In a
simple case, these would be names of columns from a database table. It is also
legal to include a host expression in the SELECT-list.

» Theitems host_expl through host_expN are target host expressions, such as
variables or array elements. This list of host expressions is referred to as the
INTO-list.

s Theitem table is the name of the database table, view, or snapshot from which
you are selecting the data.

» Theitem optional_clauses is for any additional clauses you want to include
that are valid in a SELECT statement, such as a WHERE clause.

A SELECT INTO statement must return one, and only one, row of data, otherwise an
error will be generated at run time.

The default is OUT for a host expression in an INTO-list, but you can optionally state
this explicitly:

#sqgl { SELECT column_namel, column_name2 INTO :0UT host_expl, :0UT host_exp2
FROM table WHERE condition };

4-24 Oracle Database SQLJ Developer’'s Guide and Reference

Single-Row Query Results: SELECT INTO Statements

Trying to use an IN or INOUT token in the INTO-list will result in an error at
translation time.

Notes:

s Permissible syntax for expressionl through expressionh,
the table, and the optional clauses is the same as for any SQL
SELECT statement.

» There can be any number of SELECT-list and INTO-list items, as
long as they match. That is, one INTO-list item per SELECT-list
item, with compatible types.

Examples of SELECT INTO Statements

The examples in this section use an employee table EMP with the following rows:

CREATE TABLE EMP (
EMPNO NUMBER (4)
ENAME VARCHAR2 (

)

10),
HIREDATE DATE) ;

The following is an example of a SELECT INTO statement with a single host
expression in the INTO-list:

String empname;

#sgl { SELECT ename INTO :enpname FROM emp WHERE empno=28959 };

The following is an example of a SELECT INTO statement with multiple host
expressions in the INTO-list:

String empname;

Date hdate;

#sgl { SELECT ename, hiredate INTO :empname, :hdate FROM emp
WHERE empno=28959 };

Examples with Host Expressions in SELECT-List

It is legal to use Java host expressions in the SELECT-list as well as in the INTO-list. For
example, you can select directly from one host expression into another, though this is
of limited usefulness, as follows:

#sgl { SELECT :namel INTO :name2 FROM emp WHERE empno=28959 };

More realistically, you may want to perform an operation or concatenation on the data
selected, as in the following examples. Assume Java variables were previously
declared and assigned, as necessary.

#sgl { SELECT sal + :raise INTO :newsal FROM emp WHERE empno=28959 };

#sql { SELECT :(firstname + " ") || emp_last_name INTO :name FROM myemp
WHERE empno=28959 };

Basic Language Features 4-25

Multirow Query Results: SQLJ Iterators

In the second example, presume myemp is a table much like the emp table but with an
emp_last_name column instead of an ename column. In the SELECT statement,
firstname is prepended to a single space (" "), using a Java host expression and the
Java string concatenation operator (+). This result is then passed to the SQL engine,
which uses SQL string concatenation operator (| |) to append the last name.

SELECT INTO Error Conditions

Remember that SELECT INTO statements are intended for queries that return exactly
one row of data only. A SELECT INTO query that finds zero rows or multiple rows
will result in an exception, as follows:

= A SELECT INTO finding no rows will return an exception with a SQL state of
2000, representing a "no data" condition.

= A SELECT INTO finding multiple rows will return an exception with a SQL state
of 21000, representing a cardinality violation.

You can retrieve the SQL state through the get SQLState () method of the
java.sqgl.SQLException class.

See Also: "Retrieving SQL States and Error Codes" on page 3-17

This is vendor-independent behavior that is specified in the ISO SQL] standard. There
is no vendor-specific error code in these cases. The error code is always 0.

Multirow Query Results: SQLJ Iterators

A large number of SQL operations are multirow queries. Processing multirow query
results in SQL]J requires a SQLJ iterator. A SQL]J iterator is a strongly typed version of a
JDBC result set and is associated with the underlying database cursor. SQL] iterators
are primarily used to take query results from a SELECT statement.

Additionally, Oracle offers SQL] extensions that enable you to use SQLJ iterators and
result sets in the following ways:

» As OUT host variables in executable SQL statements
= As INTO-list targets, such as in a SELECT INTO statement
= Asareturn type from a stored function call

= Ascolumn types in iterator declarations (essentially, nested iterators)

Note: To use a SQL] iterator in any of these ways, its class must be
declared as public. If you declared it at the class level or
nested-class level, then it might be advisable to declare it as
public static.

This section covers the following topics:

» Iterator Concepts

= General Steps in Using an Iterator

s Named, Positional, and Result Set Iterators
= Using Named Iterators

= Using Positional Iterators

4-26 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

= Using Iterators and Result Sets as Host Variables

= Using Iterators and Result Sets as Iterator Columns

See Also: "lterator Class Implementation and Advanced
Functionality" on page 7-27

Iterator Concepts

Using a SQLJ iterator declaration results in a strongly typed iterator. This is the typical
usage for iterators and takes particular advantage of SQLJ semantics-checking features
during translation. It is also possible, and at times advantageous, to use weakly typed
iterators. There are generic classes you can instantiate in order to use a weakly typed
iterator.

This section covers the following topics:
= Introduction to Strongly Typed Iterators
s Introduction to Weakly Typed Iterators

Introduction to Strongly Typed Iterators

Before using a strongly typed iterator object, you must declare an iterator class. An
iterator declaration specifies a Java class that SQL] constructs for you, where the class
attributes define the type and, optionally, the name of the columns of data in the
iterator.

A SQLJ iterator object is an instance of such a specifically declared iterator class, with a
fixed number of columns of predefined type. This is as opposed to a JDBC result set
object, which is a standard java.sgl.ResultSet instance and can, in principle,
contain any number of columns of any type.

When you declare an iterator, you specify either just the data type of the selected
columns, or both the data type and the name of the selected columns:

= Specifying the names and data types defines a named iterator class.
= Specifying just the data types defines a positional iterator class.

The data types and names, if applicable, that you declare determine how query results
will be stored in iterator objects you instantiate from that class. SQL data retrieved into
an iterator object are converted to the Java types specified in the iterator declaration.

When you query to populate a named iterator object, the name and data type of the
columns in the SELECT statement must match the name and data type of the iterator
columns. However, this is not case-sensitive. The order of the columns in the SELECT
statement is irrelevant. All that matters is that each column name in the SELECT
statement matches an iterator column name. In the simplest case, the database column
names directly match the iterator column names.

For example, data from an ENAME column in a database table can be selected and put
into an iterator ename column. Alternatively, you can use an alias to map a database
column name to an iterator column name if the names differ. Also, in a more
complicated query, you can perform an operation between two columns and alias the
result to match the corresponding iterator column name.

Because SQL] iterators are strongly typed, they offer the benefit of Java type-checking
during the SQL]J semantics-checking phase.

As an example, consider the following table:

CREATE TABLE EMPSAL (

Basic Language Features 4-27

Multirow Query Results: SQLJ Iterators

EMPNO NUMBER(4),
ENAME VARCHAR2(10),
OLDSAL NUMBER(10)
RAISE NUMBER(10));

Given this table, you can declare a named iterator as follows.

#sqgl iterator SalNamedIter (int empno, String ename, float raise);

Once declared, you can use this named iterator as follows:

class MyClass {
void func() throws SQLException {

SalNamedIter niter;
#sgl niter = { SELECT ename, empno, raise FROM empsal };

. process niter ...

}

This is a simple case where the iterator column names match the table column names.
Note that the order of items in the SELECT statement does not matter when you use a
named iterator. Data is matched by name, not position.

When you query to populate a positional iterator object, the data is retrieved according
to the order in which you select the columns. Data from the first column selected from
the database table is placed into the first column of the iterator, and so on. The data
types of the table columns must be convertible to the types of the iterator columns, but
the names of the database columns are irrelevant, as the iterator columns have no
names.

Given the EMPSAL table, you can declare a positional iterator as follows:

#sqgl iterator SalPosIter (int, String, float);

You can use this positional iterator as follows:

class MyClass {
void func() throws SQLException {

SalPosIter piter;
#sqgl piter = { SELECT empno, ename, raise FROM empsal };

. process piter ...

}

Note that the order of the data items in the SELECT statement must be the same as in
the iterator. The processing differs between named iterators and positional iterators.

General lterator Notes

In addition to the preceding concepts, be aware of the following general notes about
iterators:

s The SELECT * syntax is allowed in populating an iterator, but is not
recommended. In the case of a positional iterator, this requires that the number of
columns in the table be equal to the number of columns in the iterator, and that the
data types match in order. In the case of a named iterator, this requires that the
number of columns in the table be greater than or equal to the number of columns
in the iterator and that the name and data type of each iterator column match a

4-28 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

database table column. However, if the number of columns in the table is greater,
then a warning will be generated unless the translator ~-warn=nostrict flagis
set.

See Also: "Translator Warnings (-warn)" on page 8-33

= Positional and named iterators are distinct and incompatible kinds of Java classes.
An iterator object of one kind cannot be cast to an iterator object of the other kind.

= Unlike a SQL cursor, an iterator instance is a first-class Java object. That is, it can
be passed and returned as a method parameter, for example. Also, an iterator
instance can be declared using Java class modifiers, such as public or private.

= SQLJ supports interoperability and conversion between SQL] iterators and JDBC
result sets.

See Also: "SQL] Iterator and JDBC Result Set Interoperability" on
page 7-41

= Generally speaking, the contents of an iterator is determined only by the state of
the database at the time of execution of the SELECT statement that populated it.
Subsequent UPDATE, INSERT, DELETE, COMMIT, or ROLLBACK operations have no
effect on the iterator or its contents. The exception to this is if you declare an
iterator to be scrollable and sensitive to changes in the data.

See Also: "Effect of Commits and Rollbacks on Iterators and Result
Sets" on page 3-21, "Declaring Scrollable Iterators" on page 7-30, and
"Scrollable Iterator Sensitivity" on page 7-30.

Introduction to Weakly Typed Iterators

In case you do not want to declare an iterator class, the Oracle SQLJ implementation
enables you to use a weakly typed iterator. Such iterators are known as result set
iterators. To use a plain (nonscrollable) result set iterator, instantiate the
sglj.runtime.ResultSetIterator class. To use a scrollable result set iterator,
instantiate the sglj.runtime.ScrollableResultSetIterator class.

The drawback to using result set iterators, compared to strongly typed iterators, is that
SQLJ cannot perform as much semantics-checking for your queries.

See Also: "Scrollable Iterators" on page 7-30 and "Result Set
Iterators" on page 7-29

General Steps in Using an Iterator

You must follow the following general steps to use SQL] named or positional iterator:

1. Use a SQL]J declaration to define the iterator class (in other words, to define the
iterator type).

2. Declare a variable of the iterator class.

3. Populate the iterator variable with the results from a SQL query, using a SELECT
statement.

4. Access the query columns in the iterator. How to accomplish this differs between
named iterators and positional iterators.

5. When you finish processing the results of the query, close the iterator to release its
resources.

Basic Language Features 4-29

Multirow Query Results: SQLJ Iterators

Named, Positional, and Result Set Iterators

There are advantages and appropriate situations for each kind of SQL] iterator.

Named iterators allow greater flexibility. Because data selection into a named iterator
matches the columns in the SELECT statement to iterator columns by name, you need
not be concerned about the order in your query. This is less prone to error, as it is not
possible for data to be placed into the wrong column. If the names do not match, then
the SQLJ translator will generate an error when it checks the SQL statements against
the database.

Positional iterators offer a familiar paradigm and syntax to developers who have
experience with other embedded-SQL languages. With named iterators you use a
next () method to retrieve data, while with positional iterators you use FETCH INTO
syntax similar to that of Pro*C, for example. Each fetch implicitly advances to the next
available row of the iterator before retrieving the next set of values.

However, positional iterators do offer less flexibility than named iterators, because you
are selecting data into iterator columns by position, instead of by name. You must be
certain of the order of items in your SELECT statement. Also, you must select data into
all columns of the iterator. It is possible to have data written into the wrong iterator
column, if the data type of that column happens to match the data type of the table
column being selected.

Access to individual data elements is also less convenient with positional iterators.
Named iterators, because they store data by name, are able to have convenient
accessor methods for each column. For example, there would be an ename () method
to retrieve data from an ename iterator column. With positional iterators, you must
fetch data directly into Java host expressions with the FETCH INTO statement, and the
host expressions must be in the correct order.

If you do not want to declare strongly typed iterator classes for your queries, then you
can choose the alternative of using weakly typed result set iterators. Result set iterators
are most convenient when converting JDBC code to SQL]J code. You must balance this
consideration against the fact that result set iterators, either ResultSetIterator
instances or ScrollableResultSetIterator instances, do not allow complete
SQLJ semantics-checking during translation. With named or positional iterators, SQL]J
verifies that the data types of columns in the SELECT statement match the Java types
into which the data will be materialized. With result set iterators, this is not possible.

See Also: "Result Set Iterators" on page 7-29

Comparative Iterator Notes
Be aware of the following notes regarding SQLJ iterators:

= In populating a positional iterator, the number of columns you select from the
database must equal the number of columns in the iterator. In populating a named
iterator, the number of columns you select from the database can never be less
than the number of columns in the iterator, but can be greater than the number of
columns in the iterator if you have the translator -warn=nostrict flag set.
Unmatched columns are ignored in this case.

See Also: "Translator Warnings (-warn)" on page 8-33

= Although the term "fetching" often refers to fetching data from a database,
remember that a FETCH INTO statement for a positional iterator does not
necessarily involve a round trip to the server. This depends on the row-prefetch
value. This is because you are fetching data from the iterator, and not the database.

4-30 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

However, if the row-prefetch value is 1, then each fetch does involve a separate
trip to the database. The row-prefetch value determines how many rows are
retrieved with each trip to the database.

See Also: "Row Prefetching" on page 10-2

= Result set iterators use the same FETCH INTO syntax that is used with positional
iterators and are subject to the same restriction at run time. That is, the number of
data items in the SELECT-list must match the number of variables that are
assigned data in the FETCH statement.

Using Named Iterators

When you declare a named iterator class, you declare the name as well as the data type
of each column of the iterator. When you select data into a named iterator, the columns
in the SELECT statement must match the iterator columns in two ways:

s The name of each data item in the SELECT statement, either a table column name
or an alias, must match an iterator column name. However, this is not
case-sensitive. That is, ename or Ename would match ENAME).

s The data type of each iterator column must be compatible with the data type of the
corresponding data item in the SELECT statement according to standard JDBC

type mappings.
The order in which attributes are declared in the named iterator class declaration is
irrelevant. Data is selected into the iterator based on name alone.

A named iterator has a next () method to retrieve data row by row and an accessor
method for each column to retrieve the individual data items. The accessor method
names are identical to the column names. Unlike most accessor method names in Java,
accessor method names in named iterator classes do not start with get. For example, a
named iterator object with a column sal would have a sal () accessor method.

Note: The following restrictions apply in naming the columns of a
named iterator:

s Column names cannot use Java reserved words.

s Column names cannot have the same name as utility methods
provided in named iterator classes, such as the next (),
close(),getResultSet (),and isClosed () methods. For
scrollable named iterators, this includes additional methods
such asprevious (), first (), and last ().

Declaring Named Iterator Classes
Use the following syntax to declare a named iterator class:

#sql <modifiers> iterator classname <implements clause> <with clause>
(type-name-list);

In this syntax, modi fiers is an optional sequence of legal Java class modifiers,
classname is the desired class name for the iterator, and type-name-1ist is a list of
the Java types and names equivalent to or compatible with the column types and
column names in a database table.

The implements clause and with clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively.

Basic Language Features 4-31

Multirow Query Results: SQLJ Iterators

See Also: "Declaration IMPLEMENTS Clause" on page 4-3 and
"Declaration WITH Clause" on page 4-4

Consider the following table:

CREATE TABLE PROJECTS (
ID NUMBER(4),
PROJNAME VARCHAR(30),
START_DATE DATE,
DURATION NUMBER (3));

You can declare the following named iterator to use with this table:

#sgl public iterator ProjIter (String projname, int id, Date deadline);

This will result in an iterator class with columns of data accessible, using the following
provided accessor methods: projname (), 1d (), and deadline ().

Note: As with standard Java, any public class should be declared
in one of the following ways:

= Declare it in a separate source file. The base name of the file
should be the same as the class name.

= Declare it at class-level scope or nested-class-level scope, with
public static modifiers.

This is a requirement if you are using the standard javac compiler
provided with the Sun Microsystems JDK.

Instantiating and Populating Named Iterators

Continuing to use the PROJECTS table and ProjIter iterator defined in the
preceding section, note that there are columns in the table whose names and data
types match the id and projname columns of the iterator. However, you must use an
alias and perform an operation to populate the deadline column of the iterator.
Following is an example:

ProjIter projslter;

#sqgl projsIter = { SELECT start_date + duration AS deadline, projname, id
FROM projects WHERE start_date + duration >= sysdate };

This calculates a deadline for each project by adding its duration to its start date, then

aliases the results as deadline to match the deadline iterator column. It also uses a
WHERE clause so that only future deadlines are processed, that is, deadlines beyond the
current system date in the database.

Similarly, you must create an alias if you want to use a function call. Suppose you have
a MAXIMUM () function that takes a DURATION entry and an integer as input and
returns the maximum of the two. For example, you could input the value 3 to ensure
that each project has at least a three-month duration in your application.

Now, presume you are declaring your iterator as follows:

#sql public iterator ProjIter2 (String projname, int id, float duration);

You could use the MAXIMUM () function in your query, with an alias for the result, as
follows:

ProjIter2 projsIter2;

4-32 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

#sqgl projsIter2 = { SELECT id, projname, maximum(duration, 3) AS duration
FROM projects };

Generally, you must use an alias in your query for any data item in the SELECT
statement whose name is not a legal Java identifier or does not match a column name
in the iterator.

Remember that in populating a named iterator, the number of columns you select from
the database can never be less than the number of columns in the iterator. The number
of columns you select can be greater than the number of columns in the iterator,
because unmatched columns are ignored. However, this will generate a warning,
unless you have the SQL] -warn=nostrict option set.

Accessing Named lterators

Use the next () method of the named iterator object to step through the data that was
selected into it. To access each column of each row, use the accessor methods generated
by SQLJ, typically inside a while loop.

Whenever next () is called:

n If there is another row to retrieve from the iterator, then next () retrieves the row
and returns true.

s If there are no more rows to retrieve, next () returns false.

The following is an example of how to access the data of a named iterator, repeating
the declaration, instantiation, and population code illustrated in the preceding section.

Note: Each iterator has a close () method that you must always
call when you finish retrieving data from the iterator. This is
necessary to close the iterator and free its resources.

Presume the following iterator class declaration:

#sqgl public iterator ProjIter (String projname, int id, Date deadline);

Populate and then access an instance of this iterator class as follows:

// Declare the iterator variable
ProjIter projslter;

// Instantiate and populate iterator; order of SELECT doesn’'t matter
#sqgl projsIter = { SELECT start_date + duration AS deadline, projname, id
FROM projects WHERE start_date + duration >= sysdate };

// Process the results

while (projsIter.next()) {
System.out.println("Project name is " + projsIter.projname());
System.out.println("Project ID is " + projsIter.id());
System.out.println("Project deadline is " + projsIter.deadline());

// Close the iterator
projsIter.close();

Basic Language Features 4-33

Multirow Query Results: SQLJ Iterators

Note the convenient use of the projname (), 1d (), and deadline () accessor
methods to retrieve the data. Note also that the order of the SELECT items does not
matter, nor does the order in which the accessor methods are used.

However, remember that accessor method names are created with the case exactly as
in your declaration of the iterator class. The following will generate compilation errors.

Consider the following declaration of the iterator:

#sqgl iterator Cursorl (String NAME);

The code for using the iterator is as follows:

Cursorl cl;
#sqgql cl = { SELECT NAME FROM TABLE };
while (cl.next()) {
System.out.println("The name is " + cl.name());

The Cursorl class has a method called NAME (), and not name (). You will have to
use c1.NAME () in the System.out .println statement.

Using Positional Iterators

When you declare a positional iterator class, you declare the data type of each column
but not the column name. The Java types into which the columns of the SQL query
results are selected must be compatible with the data types of the SQL data. The names
of the database columns or data items in the SELECT statement are irrelevant. Because
names are not used, the order in which you declare your positional iterator Java types
must exactly match the order in which the data is selected.

To retrieve data from a positional iterator once data has been selected into it, use a
FETCH INTO statement followed by an endFetch () method call to determine if you
have reached the end of the data.

Declaring Positional Iterator Classes
Use the following syntax to declare a positional iterator class:

#sql <modifiers> iterator classname <implements clause> <with clause>
(position-list);

In this syntax, modifiers is an optional sequence of legal Java class modifiers and
the position-Iistis a list of Java types compatible with the column types in a
database table.

The implements clause and with clause are optional, specifying interfaces to

implement and variables to define and initialize, respectively.

See Also: "Declaration IMPLEMENTS Clause" on page 4-3 and
"Declaration WITH Clause" on page 4-4

Now consider an employee table EMP with the following rows:

CREATE TABLE EMP
EMPNO NUMBER (4),
ENAME VARCHAR2 (10),
SAL NUMBER(7,2));

4-34 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

And consider the following positional iterator declaration:

#sgl public iterator EmpIter (String, int, float);

This example defines the EmpIter Java class with unnamed String, int, and float
columns. Note that the table columns and iterator columns are in a different order,
with the String corresponding to ENAME and the int corresponding to EMPNO. The
order of the iterator columns determines the order in which you must select the data.

Note: As with standard Java, any public class should be declared
in one of the following ways:

= Declare it in a separate source file. The base name of the file
should be the same as the class name.

= Declare it at class-level scope or nested-class-level scope, with
public static modifiers.

This is a requirement if you are using the standard javac compiler
provided with the Sun Microsystems JDK.

Instantiating and Populating Positional Iterators

Instantiating and populating a positional iterator is no different than doing so for a
named iterator, except that you must be certain that the data items in the SELECT
statement are in the proper order.

The three data types in the EmpIter iterator class are compatible with the types of the
EMP table, but be careful how you select the data, because the order is different. The
following will work, because the data items in the SELECT statement are in the same
order as the iterator columns:

EmpIter empslter;
#sqgl empsIter = { SELECT ename, empno, sal FROM emp };

Remember that in populating a positional iterator, the number of columns you select
from the database must equal the number of columns in the iterator.

Accessing Positional Iterators

Access the columns defined by a positional iterator using SQL FETCH INTO syntax.
The INTO part of the command specifies Java host variables that receive the results
columns. The host variables must be in the same order as the corresponding iterator
columns. Use the endFetch () method provided with all positional iterator classes to
determine whether the last fetch reached the end of the data.

Basic Language Features 4-35

Multirow Query Results: SQLJ Iterators

Notes:

s The endFetch () method initially returns true before any
rows have been fetched, then returns false once a row has
been successfully retrieved, and then returns true again when
a FETCH finds no more rows to retrieve. Therefore, you must
perform the endFetch () test after the FETCH INTO statement.
If your endFetch () test precedes the FETCH INTO statement,
then you will never retrieve any rows, because endFetch ()
would be true before your first FETCH and you would
immediately break out of the while loop.

s The endFetch () test must be before the results are processed,
however, because the FETCH does not throw a SQL exception
when it reaches the end of the data, it just triggers the next
endFetch () call to return true. If there is no endFetch ()
test before results are processed, then your code will try to
process NULL or invalid data from the first FETCH attempt after
the end of the data had been reached.

= Eachiterator has a close () method that you must always call
once you finish retrieving data from it. This is necessary to
close the iterator and free its resources.

The following is an example, repeating the declaration, instantiation, and population
code illustrated in the preceding section. Note that the Java host variables in the
SELECT statement are in the same order as the columns of the positional iterator,
which is mandatory.

First, presume the following iterator class declaration:

#sqgl public iterator EmpIter (String, int, float);

Populate and then access an instance of this iterator class as follows:

// Declare and initialize host variables
int empnum=0;

String empname=null;

float salary=0.0f;

// Declare an iterator instance
EmpIter empslIter;

#sqgl empsIter = { SELECT ename, empno, sal FROM emp };

while (true) {
#sgql { FETCH :empsIter INTO :empnum, :empname, :salary };
if (empsIter.endFetch()) break; // This test must be AFTER fetch,
// but before results are processed.
System.out.println("Name is " + empname);
System.out.println("Employee number is " + empnum);
System.out.println("Salary is " + salary);

}

// Close the iterator
empsIter.close();

4-36 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

The empname, empnum, and salary variables are Java host variables whose types
must match the types of the iterator columns.

Do not use the next () method for a positional iterator. A FETCH operation calls it
implicitly to move to the next row.

Note: Host variables in a FETCH INTO statement must always be

initialized because they are assigned in one branch of a conditional

statement. Otherwise, you will get a compiler error indicating they

may never be assigned. FETCH can assign the variables only if there
was a row to be fetched.

Positional Iterator Navigation with the next() Method

The positional iterator FETCH clause discussed in the preceding section performs a
movement, an implicit next () call, before it populates the host variables, if any. As an
alternative, the Oracle SQL] implementation supports a special FETCH syntax in
conjunction with explicit next () calls in order to use the same movement logic as
with JDBC result sets and SQLJ named iterators. Using this special FETCH syntax, the
semantics differ. There is no implicit next () call before the INTO-list is populated.

See Also: "FETCH CURRENT Syntax: from JDBC Result Sets to
SQL]J Iterators" on page 7-33

Using Iterators and Result Sets as Host Variables

SQLJ supports SQLJ iterators and JDBC result sets as host variables. Using iterators
and result sets is fundamentally the same, with differences in declarations and in
accessor methods to retrieve the data.

Notes:

= Additionally, SQL]J supports iterators and result sets as return
variables for stored functions.

s The Oracle JDBC drivers currently do not support result sets as
input host variables. There is a setCursor () method in the
OraclePreparedStatement class, but it raises an exception
at run time if called.

For the examples in this section, consider the following department and employee
tables:

CREATE TABLE DEPT (
DEPTNO NUMBER(2),
DNAME VARCHAR2 (14));

CREATE TABLE EMP (
EMPNO NUMBER(4),
ENAME VARCHAR2 (10),

SAL NUMBER(7,2)

2

DEPTNO NUMBER (2));

Example: Use of Result Set as OUT Host Variable
This example uses a JDBC result set as an output host variable.

Basic Language Features 4-37

Multirow Query Results: SQLJ Iterators

ResultSet rs;

#sqgl { BEGIN
OPEN :0UT rs FOR SELECT ename, empno FROM emp;
END };

while (rs.next())

{
String empname = rs.getString(1l);
int empnum = rs.getInt(2);

}

rs.close();

This example opens the result set rs in a PL/SQL block to receive data from a SELECT
statement, selects data from the ENAME and EMPNO columns of the EMP table, and then
loops through the result set to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable
This example uses a named iterator as an output host variable.

The iterator can be declared as follows:

#sqgl public <static> iterator EmpIter (String ename, int empno);

The public modifier is required, and the static modifier may be advisable if your
declaration is at class level or nested-class level.

This iterator can be used as follows:

EmpIter iter;

#sqgl { BEGIN
OPEN :0UT iter FOR SELECT ename, empno FROM emp;
END };

while (iter.next())

{
String empname = iter.ename();
int empnum = iter.empno();

...process/output empname and empnum. .
}

iter.close();

This example opens the iterator iter in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP table,
and then loops through the iterator to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable for SELECT INTO

This example uses a named iterator as an output host variable, taking data through a
SELECT INTO statement. OUT is the default for host variables in an INTO-list.

The iterator can be declared as follows:

#sqgl public <static> iterator ENamelter (String ename) ;

4-38 Oracle Database SQLJ Developer’'s Guide and Reference

Multirow Query Results: SQLJ Iterators

The public modifier is required, and the static modifier may be advisable if your
declaration is at class level or nested-class level.

This iterator can be used as follows:

ENameIter enamesIter;
String deptname;

#sqgl { SELECT dname, cursor
(SELECT ename FROM emp WHERE deptno = dept.deptno)
INTO :deptname, :enamesIter FROM dept WHERE deptno = 20 };

System.out.println (deptname) ;
while (enamesIter.next())
{
System.out.println(enamesIter.ename()) ;

}

enamesIter.close();

This example uses nested SELECT statements to accomplish the following;:

= Select the name of department number 20 from the DEPT table, selecting it into the
deptname output host variable.

= Query the EMP table to select all employees whose department number is 20,
selecting the resulting cursor into the enamesIter output host variable, which is
a named iterator.

= Print the department name.

= Loop through the named iterator printing employee names. This prints the names
of all employees in the department.

In most cases, using SELECT INTO is more convenient than using nested iterators if
you are retrieving a single row in the outer SELECT, although that option is also
available. Also, with nested iterators, you would have to process the data to determine
how many rows there are in the outer SELECT. With SELECT INTO you are assured of
just one row.

Using Iterators and Result Sets as Iterator Columns

The Oracle SQL]J implementation includes extensions that allow iterator declarations
to specify columns of ResultSet type or columns of other iterator types declared
within the current scope. In other words, iterators and result sets can exist within
iterators. These column types are used to retrieve a column in the form of a cursor.
This is useful for nested SELECT statements that return nested table information.

The following examples are functionally identical. Each uses a nested result set or
iterator, that is, result sets or iterators in a column within an iterator, to print all the
employees in each department in the DEPT table. The first example uses result sets
within a named iterator, the second example uses named iterators within a named
iterator, and the third example uses named iterators within a positional iterator.

Following are the steps:
1. Select each department name (DNAME) from the DEPT table.

2. Do anested SELECT into a cursor to get all employees from the EMP table for each
department.

Basic Language Features 4-39

Multirow Query Results: SQLJ Iterators

3. Put the department names and sets of employees into the outer iterator (iter),
which has a name column and an iterator column. The cursor with the employee
information for any given department goes into the iterator column of the row of
the outer iterator corresponding to the department.

4. Go through a nested loop that, for each department, prints the department name
and then loops through the inner iterator to print all employee names for that
department.

Example: Result Set Column in a Named Ilterator
This example uses a column of type ResultSet in a named iterator.

The iterator can be declared as follows:

#sqgl iterator DeptIter (String dname, ResultSet emps);

The code that uses the iterator is as follows:

DeptlIter iter;

#sqgl iter = { SELECT dname, cursor
(SELECT ename FROM emp WHERE deptno = dept.deptno)
AS emps FROM dept };

while (iter.next())
{
System.out.println(iter.dname());
ResultSet enamesRs = iter.emps();
while (enamesRs.next())
{
String empname = enamesRs.getString(l);
System.out.println (empname) ;
}

enamesRs.close() ;

}

iter.close();

Example: Named Iterator Column in a Named Iterator

This example uses a named iterator that has a column whose type is that of a
previously defined named iterator (nested iterators).

The iterator declaration is as follows:

#sqgl iterator ENamelter (String ename);
#sqgl iterator DeptIter (String dname, ENamelter emps);

The code that uses this iterator is as follows:

DeptIter iter;

#sqgl iter = { SELECT dname, cursor
(SELECT ename FROM emp WHERE deptno = dept.deptno)
AS emps FROM dept };

while (iter.next())
{

System.out.println(iter.dname());
ENameIter enamesIter = iter.emps();

4-40 Oracle Database SQLJ Developer’'s Guide and Reference

Assignment Statements (SET)

while (enamesIter.next())
{
System.out.println(enamesIter.ename());
}
enamesIter.close();
}
iter.close();

Example: Named Iterator Column in a Positional Iterator

This example uses a positional iterator that has a column whose type is that of a
previously defined named iterator (nested iterators). This uses the FETCH INTO
syntax of positional iterators. This example is functionally equivalent to the previous
two.

Note that because the outer iterator is a positional iterator, there does not have to be an
alias to match a column name, as was required when the outer iterator was a named
iterator in the previous example.

The iterator declaration is as follows:

#sqgl iterator ENamelter (String ename);
#sqgl iterator DeptIter (String, ENamelter);

The code that uses this iterator is as follows:

DeptIter iter;

#sqgl iter = { SELECT dname, cursor
(SELECT ename FROM emp WHERE deptno = dept.deptno)
FROM dept };

while (true)
{
String dname = null;
ENameIter enamesIter = null;
#sgl { FETCH :iter INTO :dname, :enamesIter };
if (iter.endFetch()) break;
System.out.println (dname) ;
while (enamesIter.next())
{
System.out.println(enamesIter.ename()) ;
}
enamesIter.close();
}

iter.close();

Assignment Statements (SET)

SQL]J enables you to assign a value to a Java host expression inside a SQL operation.
This is known as an assignment statement and is accomplished using the following
syntax:

#sqgl { SET :host_exp = expression };

The host_exp is the target host expression, such as a variable or array index. The
expression could be a number, host expression, arithmetic expression, function call,
or other construct that yields a valid result into the target host expression.

Basic Language Features 4-41

Stored Procedure and Function Calls

The default is OUT for a target host expression in an assignment statement, but you can
optionally state this explicitly:

#sgl { SET :0UT host_exp = expression };

Trying to use an IN or INOUT token in an assignment statement will result in an error
at translation time.

The preceding statements are functionally equivalent to the following PL/SQL code:

#sqgl { BEGIN :0UT host_exp := expression; END };

Here is a simple example of an assignment statement:

#sqgl { SET :x = fool() + foo2() };

This statement assigns to x the sum of the return values of fool () and foo2 () and
assumes that the type of x is compatible with the type of the sum of the outputs of
these functions.

Consider the following additional examples:

int 12;
java.sqgl.Date dat;

#sqgl { SET :12 = TO_NUMBER (substr(’750 etc.’, 1, 3)) +
TO_NUMBER (substr(’250 etc.’, 1, 3)) };

#sql { SET :dat = sysdate };

The first statement will assign to i2 the value 1000. The substr () calls takes the first
three characters of the strings, that is, "750" and "250". The TO_NUMBER () calls convert
the strings to the numbers 750 and 250.

The second statement will read the database system date and assign it to dat.

An assignment statement is especially useful when you are performing operations on
return variables from functions stored in the database. You do not need an assignment
statement to simply assign a function result to a variable, because you can accomplish
this using normal function call syntax. You also do not need an assignment statement
to manipulate output from Java functions, because you can accomplish that in a
normal Java statement. So you can presume that fool () and foo2 () are stored
functions in the database, not Java functions.

Stored Procedure and Function Calls

SQLJ provides convenient syntax for calling stored procedures and stored functions in
the database. These procedures and functions could be written in Java, PL/SQL, or
any other language supported by the database.

A stored function requires a result expression in your SQL]J executable statement to
accept the return value and, optionally, can take input, output, or input-output
parameters as well.

A stored procedure does not have a return value. Optionally, it can take input, output,
or input-output parameters. A stored procedure can return output through any output
or input-output parameter.

4-42 Oracle Database SQLJ Developer’'s Guide and Reference

Stored Procedure and Function Calls

Note: Remember that instead of using the following
procedure-call and function-call syntax, you can optionally use
JPublisher to create Java wrappers for PL/SQL stored procedures
and functions, and then call the Java wrappers as you would call
any other Java methods. JPublisher is discussed in "JPublisher and
the Creation of Custom Java Classes" on page 6-20. For additional
information, refer to the Oracle Database [Publisher User’s Guide.

This section covers the following topics:
= Calling Stored Procedures
= Calling Stored Functions

= Using Iterators and Result Sets as Stored Function Returns

Calling Stored Procedures

Stored procedures do not have a return value but can take a list with input, output,
and input-output parameters. Stored procedure calls use the CALL token. The CALL
token is followed by white space and then the procedure name. There must be a space
after the CALL token to differentiate it from the procedure name. There cannot be a set
of outer parentheses around the procedure call. This differs from the syntax for
function calls. The syntax for the CALL token is as follows:

#sgl { CALL PROC(<PARAM LIST>) };

PROC is the name of the stored procedure, which can optionally take a list of input,
output, and input-output parameters. PROC can include a schema or package name as
well, such as SCOTT.MYPROC ().

Presume that you have defined the following PL/SQL stored procedure:

CREATE OR REPLACE PROCEDURE MAX_DEADLINE (deadline OUT DATE) IS
BEGIN
SELECT MAX (start_date + duration) INTO deadline FROM projects;
END;

This reads the PROJECTS table, looks at the START_DATE and DURATION columns,
calculates start_date + duration in each row, then takes the maximum
START_DATE + DURATION total, and assigns it to DEADLINE, which is an output
parameter of type DATE.

In SQLJ, you can call this MAX_DEADLINE procedure as follows:

java.sqgl.Date maxDeadline;
#sqgl { CALL MAX_ DEADLINE(:out maxDeadline) };

For any parameters, you must use the host expression tokens IN, OUT, and INOUT
appropriately, to match the input, output, and input-output designations of the stored
procedure. Additionally, the types of the host variables you use in the parameter list
must be compatible with the parameter types of the stored procedure.

Basic Language Features 4-43

Stored Procedure and Function Calls

Note: If you want your application to be compatible with Oracle7
Database, then do not include empty parentheses for the parameter
list if the procedure takes no parameters. For example:

#sgl { CALL MAX_DEADLINE };
not:

#sgl { CALL MAX_DEADLINE() };

Calling Stored Functions

Stored functions have a return value and can also take a list of input, output, and
input-output parameters. Stored function calls use the VALUES token. The VALUES
token is followed by the function call. In standard SQLJ, the function call must be
enclosed in a set of outer parentheses. In the Oracle SQLJ implementation, the outer
parentheses are optional. When using the outer parentheses, it does not matter if there
is white space between the VALUES token and the begin-parenthesis. The syntax for
the VALUES token is as follows:

#sql result = { VALUES (FUNC(PARAM LIST)) };

In this syntax, result is the result expression, which takes the function return value.
FUNC is the name of the stored function, which can optionally take a list of input,
output, and input-output parameters. FUNC can include a schema or package name,
such as SCOTT .MYFUNC () .

Note: A VALUES token can also be used in INSERT INTO table
VALUES syntax supported by the Oracle SQL implementation, but
these situations are unrelated semantically and syntactically.

Referring back to the example in "Calling Stored Procedures" on page 4-43, consider
defining the stored procedure as a stored function instead, as follows:

CREATE OR REPLACE FUNCTION GET MAX_DEADLINE RETURN DATE IS
deadline DATE;
BEGIN
SELECT MAX (start_date + duration) INTO deadline FROM projects;
RETURN deadline;
END;
In SQLJ, you can call this GET_MAX_DEADLINE function as follows:

java.sqgl.Date maxDeadline;
#sql maxDeadline = { VALUES (GET MAX DEADLINE) };

The result expression must have a type compatible with the return type of the
function.

In the Oracle SQL] implementation, the following syntax is also allowed:

#sqgl maxDeadline = { VALUES GET_MAX_DEADLINE };

Note that the outer parentheses is omitted.

For stored function calls, as with stored procedures, you must use the host expression
tokens IN, OUT, and INOUT appropriately, to match the input, output, and
input-output parameters of the stored function. Additionally, the types of the host

4-44 Oracle Database SQLJ Developer’'s Guide and Reference

Stored Procedure and Function Calls

variables you use in the parameter list must be compatible with the parameter types of
the stored function.

Note: If you want your stored function to be portable to
non-Oracle environments, then you should use only input
parameters in the calling sequence, not output or input-output
parameters.

Using Iterators and Result Sets as Stored Function Returns

SQLJ supports assigning the return value of a stored function to an iterator or result
set variable, if the function returns a REF CURSOR type.

The following example uses an iterator to take a stored function return. Using a result
set is similar.

Example: Iterator as Stored Function Return

This example uses an iterator as a return type for a stored function, using a REF
CURSOR type in the process.

Presume the following function definition:

CREATE OR REPLACE PACKAGE sqlj_refcursor AS

TYPE EMP_CURTYPE IS REF CURSOR;

FUNCTION job_listing (j varchar2) RETURN EMP_CURTYPE;
END sqglj_refcursor;

CREATE OR REPLACE PACKAGE BODY sglj_refcursor AS
FUNCTION job_listing (j varchar) RETURN EMP_CURTYPE IS
DECLARE
rc EMP_CURTYPE;
BEGIN
OPEN rc FOR SELECT ename, empno FROM emp WHERE job = j;
RETURN rc;
END;
END sqglj_refcursor;

Declare the iterator as follows:

#sqgl public <static> iterator EmpIter (String ename, int empno);

The public modifier is required, and the static modifier may be advisable if your
declaration is at class level or nested-class level.

The code that uses the iterator and the function is as follows:

EmpIter iter;
#sqgl iter = { VALUES(sqlj_refcursor.job_listing(’SALES’)) };

while (iter.next())

{
String empname = iter.ename();
int empnum = iter.empno();

. process empname and empnum ...

}

iter.close();

Basic Language Features 4-45

Stored Procedure and Function Calls

This example calls the job_listing () function to return an iterator that contains the
name and employee number of each employee whose job title is SALES. It then
retrieves this data from the iterator.

4-46 Oracle Database SQLJ Developer’'s Guide and Reference

O

Type Support

This chapter documents data types supported by the Oracle SQLJ implementation,
listing supported SQL types and the Java types that correspond to them. This is
followed by details about support for streams and Oracle type extensions. SQL]
support of Java types refers to types that can be used in host expressions.

This chapter covers the following topics:

Supported Types for Host Expressions
Support for Streams

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

See Also: Chapter 6, "Objects, Collections, and OPAQUE Types"

Supported Types for Host Expressions

This section summarizes the types supported by the Oracle SQLJ implementation,
including information about new support for Java Database Connectivity (JDBC) 2.0

types.

See Also: Oracle Database JDBC Developer’s Guide and Reference for a
complete list of legal Java mappings for each Oracle SQL type

Note: SQLJ performs implicit conversions between SQL and Java
types. Although this is generally useful and helpful, it can produce
unexpected results. Do not rely on translation-time type-checking
alone to ensure the correctness of your code.

This section covers the following topics:

Summary of Supported Types

Supported Types and Requirements for JDBC 2.0

Using PL/SQL BOOLEAN, RECORD Types, and TABLE Types
Backward Compatibility for Previous Oracle JDBC Releases

Summary of Supported Types

Table 5-1 lists the Java types that you can use in host expressions when employing the
Oracle JDBC drivers. This table also documents the correlation between Java types,

Type Support 5-1

Supported Types for Host Expressions

SQL types whose type codes are defined in the oracle. jdbc.OracleTypes class,

and data types in Oracle Database 11g.

Note: The OracleTypes class simply defines a type code, which
is an integer constant, for each Oracle data type. For standard JDBC
types, the OracleTypes value is identical to the standard

java.sqgl.Types value.

SQL data output to a Java variable is converted to the corresponding Java type. A Java
variable input to SQL is converted to the corresponding Oracle data type.

Table 5-1 Type Mappings for Supported Host Expression Types

Java Type OracleTypes Definition Oracle SQL Data Type
STANDARD JDBC 1.x TYPES
boolean BIT NUMBER
byte TINYINT NUMBER
short SMALLINT NUMBER
int INTEGER NUMBER
long BIGINT NUMBER
float REAL NUMBER
double FLOAT, DOUBLE NUMBER
java.lang.String CHAR CHAR
VARCHAR VARCHAR2
LONGVARCHAR LONG
bytel]l BINARY RAW
VARBINARY RAW
LONGVARBINARY LONGRAW
java.sqgl .Date DATE DATE
java.sqgl.Time TIME DATE
java.sqgl.Timestamp TIMESTAMP DATE
TIMESTAMP TIMESTAMP
java.math.BigDecimal NUMERIC NUMBER
DECIMAL NUMBER
STANDARD JDBC 2.0 TYPES
java.sqgl.Blob BLOB BLOB
java.sgl.Clob CLOB CLOB
java.sql.Struct STRUCT Object types
java.sql.Ref REF Reference types
java.sql.Array ARRAY Collection types
Custom object classes implementing STRUCT Object types
java.sqgl.SQLData
JAVA WRAPPER CLASSES
java.lang.Boolean BIT NUMBER
java.lang.Byte TINYINT NUMBER

5-2 Oracle Database SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

Table 5-1 (Cont.) Type Mappings for Supported Host Expression Types

Java Type

OracleTypes Definition

Oracle SQL Data Type

java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double

SQLJ STREAM CLASSES
sglj.runtime.BinaryStream
sglj.runtime.CharacterStream

sglj.runtime.AsciiStream
(Deprecated; use CharacterStream.)

sglj.runtime.UnicodeStream
(Deprecated; use CharacterStream.)
ORACLE EXTENSIONS
oracle.sgl .NUMBER
oracle.sqgl.CHAR
oracle.sqgl.RAW
oracle.sql.DATE
oracle.sql.TIMESTAMP

oracle.sqgl.TIMESTAMPTZ

oracle.sqgl.TIMESTAMPLTZ

oracle.sgl.ROWID

oracle.sql.BLOB

oracle.sqgl.CLOB

oracle.sql.BFILE

oracle.sqgl.STRUCT

oracle.sql.REF

oracle.sqgl.ARRAY

oracle.sgl.OPAQUE

Custom object classes implementing
oracle.sqgl.ORAData

Custom reference classes implementing
oracle.sgl.ORAData

Custom collection classes implementing
oracle.sqgl.ORAData

Custom classes implementing
oracle.sqgl.ORAData for OPAQUE
types (for example,
oracle.xdb.XMLType)

SMALLINT
INTEGER
BIGINT
REAL

FLOAT, DOUBLE

LONGVARBINARY
LONGVARCHAR

LONGVARCHAR

LONGVARCHAR

NUMBER
CHAR

RAW

DATE
TIMESTAMP

TIMESTAMPTZ

TIMESTAMPLTZ

ROWID
BLOB
CLOB
BFILE
STRUCT
REF
ARRAY
OPAQUE

STRUCT

REF

ARRAY

OPAQUE

NUMBER
NUMBER
NUMBER
NUMBER

NUMBER

LONG RAW
LONG

LONG

LONG

NUMBER
CHAR

RAW

DATE
TIMESTAMP

TIMESTAMP-WITH-
TIMEZONE

TIMESTAMP-WITH-
LOCAL-TIMEZONE

ROWID

BLOB

CLOB

BFILE

Object types
Reference types
Collection types
OPAQUE types

Object types
Reference types
Collection types

OPAQUE types

Type Support 5-3

Supported Types for Host Expressions

Table 5-1 (Cont.) Type Mappings for Supported Host Expression Types

Java Type OracleTypes Definition Oracle SQL Data Type

Other custom Java classes implementing Any Any
oracle.sqgl.ORAData (to wrap any
oracle.sql type)

SQLJ object Java types (can implement JAVA_STRUCT SQLJ object SQL types

either SQL.Data or ORAData) (JAVA_STRUCT behind
the scenes; automatic
conversion to an
appropriate Java class)

JAVA TYPES FOR PL/SQL TYPES

Scalar indexed-by table represented bya NA NA
Java numeric array or an array of
String, oracle.sqgl.CHAR, or
oracle.sgl .NUMBER

Note: There is a
PLSQL_INDEX_TABLE

type, but it does not
appear to be used
externally.
GLOBALIZATION SUPPORT
oracle.sqgl .NCHAR CHAR CHAR
oracle.sgl.NString CHAR CHAR
VARCHAR VARCHAR?2
LONGVARCHAR LONG
oracle.sqgl .NCLOB CLOB CLOB
oracle.sglj.runtime.NcharCharac LONGVARCHAR LONG
terStream
oracle.sqglj.runtime. LONGVARCHAR LONG
NcharAsciiStream (Deprecated; use
NcharCharacterStream.)
oracle.sglj.runtime. LONGVARCHAR LONG
NcharUnicodeStream (Deprecated; use
NcharCharacterStream.)
QUERY RESULT OBJECTS
java.sgl.ResultSet CURSOR CURSOR
SQL]J iterator objects CURSOR CURSOR

See Also: Oracle Database JDBC Developer's Guide and Reference for
more information about Oracle type support.

The following points relate to type support for standard features:

= JDBC and SQLJ do not support Java char and Character types. Instead, use the
Java String type to represent character data.

= Do not confuse the supported java.sqgl.Date type with java.util.Date,
which is not directly supported. The java.sqgl.Date class is a wrapper for
java.util.Date that enables JDBC to identify the data as a SQL DATE and adds
formatting and parsing operations to support JDBC escape syntax for date values.

= Remember that all numeric types in Oracle Database 11g are stored as NUMBER.
Although you can specify additional precision when you declare a NUMBER during
table creation, this precision may be lost when retrieving the data through the

5-4 Oracle Database SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

Oracle JDBC drivers, depending on the Java type that you use to receive the data.
An oracle.sqgl.NUMBER instance would preserve full information.

The Java wrapper classes, such as Integer and Float, are useful in cases where
NULL may be returned by the SQL statement. Primitive types, such as int and
float, cannot contain null values.

See Also: "NULL-Handling" on page 3-14

The SQLJ stream classes are required in using streams as host variables.

See Also: "Support for Streams" on page 5-9

Weak types cannot be used for OUT or INOUT parameters. This applies to the
Struct, Ref, and Array standard JDBC 2.0 types, as well as to corresponding
Oracle extended types.

A new set of interfaces, in the oracle. jdbc package, was first added in the
Oracle9i JDBC implementation in place of classes of the oracle.jdbc.driver
package. These interfaces provide a more generic way for users to access
Oracle-specific features using Oracle JDBC drivers. Specifically, when creating
programs for the middle tier, you should use the oracle. jdbc application
programming interface (API). However, SQLJ programmers will not typically use
these interfaces directly. They are used transparently by the SQLJ run time or in
Oracle-specific generated code.

See Also: "Custom Java Class Interface Specifications" on page 6-5

For information about SQL] support for result set and iterator host variables, refer
to "Using Iterators and Result Sets as Host Variables" on page 4-45.

The following points relate to Oracle extensions:

The Oracle SQL]J implementation requires any class that implements
oracle.sqgl.ORAData to set the static _SQL_TYPECODE parameter according to
values defined in the OracleTypes class. In some cases, an additional parameter
must be set as well, such as _SQL_NAME for objects and _SQL_BASETYPE for
object references. This occurs automatically if you use the Oracle JPublisher utility
to generate the class.

See Also: "Oracle Requirements for Classes Implementing
ORAData" on page 6-10

The oracle. sql classes are wrappers for SQL data for each of the Oracle data
types. The ARRAY, STRUCT, REF, BLOB, and CLOB classes correspond to standard
JDBC 2.0 interfaces.

See Also: Oracle Database JDBC Developer's Guide and Reference for
information about these classes and Oracle extensions

Custom Java classes can map to Oracle objects, which implement ORAData or
SQLData, references, which implement ORAData only, collections, which
implement ORAData only, OPAQUE types, which implement ORAData only, or
other SQL types for customized handling, which implement ORAData only. You
can use the Oracle JPublisher utility to automatically generate custom Java classes.

Type Support 5-5

Supported Types for Host Expressions

See Also: "Custom Java Classes" on page 6-4 and "JPublisher and the
Creation of Custom Java Classes" on page 6-20

s The Oracle SQLJ implementation has functionality for automatic blank padding
when comparing a string to a CHAR column value for a WHERE clause. Otherwise
the string would have to be padded to match the number of characters in the
database column. This is available as a SQL] translator option for Oracle-specific
code generation, or as an Oracle customizer option for ISO standard code
generation.

See Also: "CHAR Comparisons with Blank Padding (-fixedchar)" on
page 8-46 and "Oracle Customizer CHAR Comparisons with Blank
Padding (fixedchar)" on page A-22

= Weak types cannot be used for OUT or INOUT parameters. This applies to the
STRUCT, REF, and ARRAY Oracle extended types and corresponding standard
JDBC 2.0 types, as well as to Oracle OPAQUE types.

= Using any of the Oracle extensions requires the following:
— Oracle JDBC driver
- Oracle-specific code generation or Oracle customization during translation

- Oracle SQLJ run time when your application runs

Supported Types and Requirements for JDBC 2.0

As indicated in Table 5-1, the Oracle JDBC and SQL]J implementations support JDBC
2.0 types in the standard java.sql package. This section lists JDBC 2.0 supported
types and related Oracle extensions.

Table 5-2 lists the JDBC 2.0 types supported by the Oracle SQLJ implementation. You
can use them wherever you can use the corresponding Oracle extensions, summarized
in the table.

The Oracle extensions have been available in prior releases and are still available as
well. These oracle.sql. * classes provide functionality to wrap raw SQL data.

See Also: Oracle Database JDBC Developer's Guide and Reference

Table 5-2 Correlation between Oracle Extensions and JDBC 2.0 Types

JDBC 2.0 Type Oracle Extension
java.sqgl.Blob oracle.sqgl.BLOB
java.sgl.Clob oracle.sqgl.CLOB
java.sqgl.Struct oracle.sqgl.STRUCT
java.sqgl.Ref oracle.sql.REF
java.sql.Array oracle.sqgl.ARRAY

java.sqgl.SQLData NA

NA oracle.sgl.ORAData
(_SQL_TYPECODE = OracleTypes.STRUCT)

ORAData functionality is an Oracle-specific alternative to standard SQLData
functionality for Java support of user-defined types.

5-6 Oracle Database SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

See Also: "Custom Java Classes" on page 6-4, "Support for BLOB,
CLOB, and BFILE" on page 5-21, and "Support for Weakly Typed
Objects, References, and Collections" on page 6-57

The following JDBC 2.0 types are currently not supported in the Oracle JDBC and SQL]
implementations:
= JAVA_OBJECT: Represents an instance of a Java type in a SQL column.

= DISTINCT: A distinct SQL type represented in or retrievable from a basic SQL
type. For example, SHOESIZE --> NUMBER.

Note: Beginning with Oracle Database 11g, the Oracle SQL]J
implementation supports the ISO SQL]J feature of allowing array
types for iterator columns. You can declare an iterator that uses
java.sqgl.Array or oracle.sqgl.ARRAY columns. For example,
suppose the following database table is defined:

CREATE OR REPLACE TYPE arr_type IS VARRAY(20) OF NUMBER;
CREATE TABLE arr_type (arr_coll arr_type, arr_col2
arr_type) ;

You could define a corresponding iterator type as follows:

#sqgl static iterator MyIter (oracle.sgl.ARRAY arr_coll,
java.sqgl.Array arr_col2);

Using PL/SQL BOOLEAN, RECORD Types, and TABLE Types

The Oracle SQL]J and JDBC implementations do not support calling arguments or
return values of the PL/SQL BOOLEAN type or RECORD types.

Support for TABLE Types
The Oracle JDBC drivers support scalar PL/SQL indexed-by tables.

See Also: Oracle Database [DBC Developer’s Guide and Reference

The Oracle SQL] implementation simplifies the process of writing and retrieving data
in scalar indexed-by tables. The following array types are supported:

s Numeric types: int [], long[], float[],double[], short[],
java.math.BigDecimal[], oracle.sqgl .NUMBERI]

» Character types: java.lang.String[], oracle.sql.CHAR[]

The following is an example of writing indexed-by table data to the database:
int[] vals = {1,2,3};

#sqgl { call procin(:vals) };

The following is an example of retrieving indexed-by table data from the database:

oracle.sqgl.CHAR[] outvals;
#sgl { call procout (:0UT outvals/*[111](22)*/) };

You must specify the maximum length of the output array being retrieved, using the
[xxx] syntax inside the /*. . . */ syntax, as shown. Also, for character-like binds,
you can optionally include the (xx) syntax, as shown, to specify the maximum length
of an array element in bytes.

Type Support 5-7

Supported Types for Host Expressions

Note: The oracle.sqgl.Datum class is not supported directly.
You must use an appropriate subclass, such as oracle.sqgl.CHAR
or oracle.sgl .NUMBER.

Workarounds for Unsupported Types

As a workaround for an unsupported type, you can create wrapper procedures that
process the data using supported types. For example, to wrap a stored procedure that
uses PL/SQL boolean values, you can create a stored procedure that takes a character
or number from JDBC and passes it to the original procedure as BOOLEAN, or for an
output parameter, accepts a BOOLEAN argument from the original procedure and
passes it as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored procedure that uses
PL/SQL records, you can create a stored procedure that handles a record in its
individual components, such as CHAR and NUMBER. To wrap a stored procedure that
uses PL/SQL TABLE types, you can break the data into components or perhaps use
Oracle collection types.

The following is an example of a PL/SQL wrapper procedure MY_PROC for a stored
procedure PROC that takes a BOOLEAN as input:

PROCEDURE MY_PROC (n NUMBER) IS
BEGIN
IF n=0
THEN proc (false);
ELSE proc(true);
END IF;
END;

PROCEDURE PROC (b BOOLEAN) IS
BEGIN

END;

Note: When using these unsupported PL/SQL types in method
signatures in PL/SQL packages or SQL objects, consider using the
Oracle Database 11g JPublisher utility. This facilitates the creation of
Java types to call such methods. Refer to "JPublisher and the
Creation of Custom Java Classes" on page 6-20 for an overview of
JPublisher, and the Oracle Database [Publisher User’s Guide for more
information.

Backward Compatibility for Previous Oracle JDBC Releases

This section summarizes backward compatibility issues when using the Oracle SQL]J
implementation with earlier Oracle JDBC releases.

In Oracle Database 11g release 1 (11.1), SQLJ fully supports applications developed in
Oracle9i Database and Oracle Database 10g release 1 (10.1). However, in Oracle
Database 11g release 1 (11.1), JDBC resources are no longer closed by the SQL]J run time
resource finalizers. Therefore, some applications developed prior to Oracle Database
11g release 1 (11.1) may observe JDBC connection and statement leaking. To prevent
such leaking, you must properly close all the SQL]J run-time resources, such as
connection context, execution context, and iterator, in your SQL] applications.

5-8 Oracle Database SQLJ Developer's Guide and Reference

Support for Streams

Notes: Oracle9i release 2 first added support for OPAQUE types
and TIMESTAMP types.

Backward Compatibility for Oracle8i Database

The following Oracle Database 11g features, which are also available in Oracle9i
Database, are not supported or supported differently in the Oracle8i JDBC drivers:

s Theoracle.sgl.ORAData and ORADataFactory interfaces for Java mapping
of user-defined SQL types

Use the oracle.sqgl.CustomDatum and CustomDatumFactory interfaces
instead.

= Oracle extensions for character types for globalization support: NCHAR, NCLOB,
NString, and NcharCharacterStream (or NcharAsciiStream and
NcharUnicodeStreamn in earlier releases)

Support for Streams

Standard SQLJ provides the following specialized classes for convenient processing of
long data in streams:

s sglj.runtime.BinaryStream
s sglj.runtime.CharacterStream

These stream types can be used for iterator columns to retrieve data from the database
or for input host variables to send data to the database. As with Java streams in
general, these classes allow the convenience of processing and transferring large data
items in manageable chunks.

This section discusses general use of these classes, Oracle SQL]J extended functionality,
and stream class methods. It covers the following topics:

s General Use of SQLJ Streams

= Key Aspects of Stream Support Classes

= Using SQL]J Streams to Send Data

s Retrieving Data into Streams: Precautions

s Using SQLJ Streams to Retrieve Data

= Stream Class Methods

= Examples of Retrieving and Processing Stream Data

= SQLJ Stream Objects as Output Parameters and Function Return Values

Note: As of JDBC 2.0, the CharacterStream class replaces the
AsciiStreamand UnicodeStream classes. CharacterStream
shelters users from unnecessary logistics regarding encoding. The
AsciiStreamand UnicodeStream classes are still supported for
backward compatibility, but are deprecated.

General Use of SQLJ Streams

Table 5-1 lists the data types you would typically process using these stream classes.
To summarize:

Type Support 5-9

Support for Streams

s BinaryStreamis typically used for LONG RAW (Types.LONGVARBINARY), but
might also be used for RAW (Types . BINARY or Types . VARBINARY).

s CharacterStreanis typically used for LONG
(Java.sgl.Types.LONGVARCHAR), but might also be used for VARCHAR?2
(Types . VARCHAR).

Of course, any use of streams is at your discretion. You can use the SQL]J stream types
for host variables to either send or retrieve data.

As Table 5-1 documents, LONG and VARCHAR?2 data can also be manifested in Java
String, while RAW and LONGRAW data can also be manifested in Java byte[] arrays.
Also, if your database supports large object types, such as BLOB and CLOB, then you
may find these to be preferable to types like LONG and LONG RAW, although streams
might still be used in extracting data from large objects. The Oracle SQLJ and JDBC
implementations support large object types.

See Also: "Support for BLOB, CLOB, and BFILE" on page 5-21

Both SQL]J stream classes are subclasses of standard Java classes,
java.io.InputStreamfor BinaryStreamand java.io.Reader for
CharacterStream, and act as wrappers to provide the functionality required by
SQLJ. This functionality is to communicate to SQLJ the type and length of the
underlying data so that it can be processed and formatted properly.

Key Aspects of Stream Support Classes

The following abbreviated code illustrates key aspects of the BinaryStream class,
such as what it extends, constructor signatures, and key method signatures:

public class sglj.runtime.BinaryStream extends sglj.runtime.StreamWrapper
{ public sglj.runtime.BinaryStream(java.io.InputStream);

public sglj.runtime.BinaryStream(java.io.InputStream,int);

public java.io.InputStream getInputStream();

public int getLength();

public void setLength(int);
}

The following abbreviated code illustrates key aspects of the CharacterStream
class:

public class sqglj.runtime.CharacterStream extends java.io.FilterReader
{ public sqglj.runtime.CharacterStream(java.io.Reader) ;

public sglj.runtime.CharacterStream(java.io.Reader, int);

public int getLength();

public java.io.Reader getReader();

public void setLength(int);

5-10 Oracle Database SQLJ Developer’'s Guide and Reference

Support for Streams

Notes:

= The int parameters in the constructors are for data length, in
bytes or characters as applicable.

s For any method that takes a java.io. InputStream object as
input, you can use a BinaryStream object instead. Similarly,
for any method that takes a java.io.Reader object as input,
you can use a CharacterStream object instead.

s The deprecated AsciiStreamand UnicodeStream classes
have the same key aspects and signatures as BinaryStream.

Using SQLJ Streams to Send Data

Standard SQLJ enables you to use streams as host variables to update the database. A
key point in sending a SQL] stream to the database is that you must somehow
determine the length of the data and specify that length to the constructor of the SQL]J
stream.

You can use a SQL]J stream to send data to the database as follows:
1. Determine the length of the data.

2. Create an appropriate standard Java data object for input. For BinaryStream,
this would be an input stream, an instance of java.io.InputStream or some
subclass. For CharactersStream, this would be a reader object, an instance of
java.io.Reader or some subclass.

3. Create an instance of the appropriate SQL]J stream class depending on the type of
data, passing the data object and length to the constructor.

4. Use the SQLJ stream instance as a host variable in a suitable SQL operation in a
SQL]J executable statement.

5. Close the stream.

Note: Although not required, it is recommended that you close the
stream after using it.

Updating LONG or LONG RAW from a File

This section illustrates how to create a CharacterStream object or a BinaryStream
object from a File object and use it to update the database. The code example at the
end uses a CharacterStream for a LONG column.

In updating a database column from a file, a step is needed to determine the length.
You can do this by creating a java.io.File object before you create your input
stream.

Following are the steps for updating the database from a file:

1. Create a java.io.File object from your file. You can specify the file path name
to the File class constructor.

2. Use the length () method of the File object to determine the length of the data.
This method returns a 1ong value, which you must cast to an int for input to the
SQL]J stream class constructor.

Type Support 5-11

Support for Streams

Note: Before performing this cast, test the 1ong value to ensure
that it is not too big to fit into an int variable. The static constant
MAX_VALUE in the class java. lang. Integer indicates the largest
possible Java int value.

3. For character data, create a java.io.FileReader object from the File object.
You can pass the File object to the FileReader constructor.

For binary data, create a java.io.FileInputStream object from the File
object. You can pass the File object to the FileInputStream constructor.

4. Create an appropriate SQL] stream object. This would be a CharacterStream
object for a character file or a BinaryStream object for a binary file. Pass the
FileReader or FileInputStream object, as applicable, and the data length as
an int to the SQLJ stream class constructor.

5. Use the SQL]J stream object as a host variable in an appropriate SQL operation in a
SQL]J executable statement.

The following is an example of writing LONG data to the database from a file. Presume
you have an HTML file in /private/mydir/myfile.html and want to insert the
file contents into a LONG column, chardata, in the filetable database table.

import java.io.*;
import sqglj.runtime.*;

File myfile = new File ("/private/mydir/myfile.html");

int length = (int)myfile.length(); // Must cast long output to int.
FileReader filereader = new FileReader (myfile);

CharacterStream charstream = new CharacterStream(filereader, length);
#sqgl { INSERT INTO filetable (chardata) VALUES (:charstream) };
charstream.close();

Updating LONG RAW from a Byte Array

This section illustrates how to create a BinaryStream object from a byte array and
uses it to update the database.

You must determine the length of the data before updating the database from a byte
array. This is more trivial for arrays than for files, though, because all Java arrays have
functionality to return the length.

Following are the steps in updating the database from a byte array:

1. Use the length functionality of the array to determine the length of the data. This
returns an int, which is what you will need for the constructor of any of the SQLJ
stream classes.

2, Createa java.io.ByteArrayInputStream object from your array. You can
pass the byte array to the ByteArrayInputStream constructor.

3. Create a BinaryStream object. Pass the ByteArrayInputStream object and
data length as an int to the BinaryStream class constructor.

The constructor signature is as follows:

BinaryStream (InputStream in, int length)

5-12 Oracle Database SQLJ Developer’'s Guide and Reference

Support for Streams

You can use an instance of java.io.InputStream or of any subclass, such as
the ByteArrayInputStream class.

4. Use the SQLJ stream object as a host variable in an appropriate SQL operation in a
SQL]J executable statement.

The following is an example of writing LONG RAW data to the database from a byte
array. Presume you have a byte array, bytearray [], and you want to insert its
contents into a LONG RAW column, BINDATA, in the BINTABLE database table.

import java.io.*;
import sglj.runtime.*;

bytel] bytearray = new byte[100];
(Populate bytearray somehow.)

int length = bytearray.length;

ByteArrayInputStream arraystream = new ByteArrayInputStream(bytearray);
BinaryStream binstream = new BinaryStream(arraystream, length);

#sgl { INSERT INTO bintable (bindata) VALUES (:binstream) };
binstream.close();

Note: It is not necessary to use a stream as in this example.
Alternatively, you can update the database directly from a byte
array.

Retrieving Data into Streams: Precautions

You can also use the SQL]J stream classes to retrieve data, but the logistics of using
streams make certain precautions necessary with some database products. When
reading long data and writing it to a stream using Oracle Database 11g and an Oracle
JDBC driver, you must be careful in how you access and process the stream data.

As the Oracle JDBC drivers access data from an iterator row, they must flush any
stream item from the communications pipe before accessing the next data item. Even
though the stream data is written to a local stream while the iterator row is processed,
this stream data will be lost if you do not read it from the local stream before the JDBC
driver accesses the next data item. This is because of the manner in which streams
must be processed, which is due to their potentially large size and unknown length.

Therefore, as soon as your Oracle JDBC driver has accessed a stream item and written
it to a local stream variable, you must read and process the local stream before
anything else is accessed from the iterator.

This is especially problematic in using positional iterators, with their requisite FETCH
INTO syntax. With each fetch, all columns are read before any are processed.
Therefore, there can be only one stream item and it must be the last item accessed.

The precautions you must take can be summarized as follows:

= When using a positional iterator, you can have only one stream column and it
must be the last column. As soon as you have fetched each row of the iterator,
writing the stream item to a local input stream variable in the process, you must
read and process the local stream variable before advancing to the next row of the
iterator.

Type Support 5-13

Support for Streams

= When using a named iterator, you can have multiple stream columns. However, as
you process each iterator row, each time you access a stream field, writing the data
to a local stream variable in the process, you must read and process the local
stream immediately, before reading anything else from the iterator.

Furthermore, in processing each row of a named iterator, you must call the column
accessor methods in the same order in which the database columns were selected
in the query that populated the iterator. As mentioned in the preceding discussion,
this is because stream data remains in the communications pipe after the query. If
you try to access columns out of order, then the stream data may be skipped over
and lost in the course of accessing other columns.

Note: Oracle Database 11g and the Oracle JDBC drivers do not
support use of streams in SELECT INTO statements.

Using SQLJ Streams to Retrieve Data

To retrieve data as a stream, standard SQLJ enables you to select data into a named or
positional iterator that has a column of the appropriate SQL]J stream type.

This section covers the basic steps in retrieving data into a SQL]J stream using a
positional iterator or a named iterator, taking into account the precautions
documented in the preceding section.

See Also: "Stream Class Methods" on page 5-15 and "Examples of
Retrieving and Processing Stream Data" on page 5-17

Using a SQLJ Stream Column in a Positional Iterator
Use the following steps to retrieve data into a SQL]J stream using a positional iterator:

1. Declare a positional iterator class with the last column being of the appropriate
SQLJ stream type.

2. Declare a local variable of your iterator type.

3. Declare a local variable of the appropriate SQL] stream type. This will be used as a
host variable to receive data from each row of the SQL]J stream column of the
iterator.

4. Execute a query to populate the iterator you declared in Step 2.

5. Process the iterator as usual. Because the host variables in the INTO-list of the
FETCH INTO statement must be in the same order as the columns of the positional
iterator, the local input stream variable is the last host variable in the list.

See Also: "Using Positional Iterators" on page 4-34

6. In the iterator processing loop, after each iterator row is accessed, immediately
read and process the local input stream, storing or printing the stream data as
desired.

7. Close the local input stream each time through the iterator processing loop.

8. Close the iterator.
Using SQLJ Stream Columns in a Named Iterator

Use the following steps to retrieve data into one or more SQLJ streams using a named
iterator:

5-14 Oracle Database SQLJ Developer’'s Guide and Reference

Support for Streams

1. Declare a named iterator class with one or more columns of appropriate SQLJ
stream type.

2. Declare a local variable of your iterator type.

3. Declare a local variable of some input stream or reader type for each SQL]J stream
column in the iterator. These will be used to receive data from the stream-column
accessor methods. These local stream variables need not be of the SQLJ stream
types. They can be standard java.io.InputStreamor java.io.Reader, as
applicable.

Note: The local stream variables need not be of the SQLJ stream
types, because the data was already correctly formatted as a result of
the iterator columns being of appropriate SQL]J stream types.

4. Execute a query to populate the iterator you declared in Step 2.

5. Process the iterator as usual. In processing each row of the iterator, as each
stream-column accessor method returns the stream data, write it to the
corresponding local input stream variable you declared in Step 3.

To ensure that stream data will not be lost, call the column accessor methods in the
same order in which columns were selected in the query in Step 4.

See Also: "Using Positional Iterators" on page 4-34

6. In the iterator processing loop, immediately after calling the accessor method for
any stream column and writing the data to a local input stream variable, read and
process the local input stream, storing or printing the stream data as desired.

7. Close the local input stream each time through the iterator processing loop.

8. Close the iterator.

Notes:

= When you populate a SQL]J stream object with data, the length
attribute of the stream will not be meaningful. This attribute is
meaningful only when you set it explicitly, either using the
setLength () method that each SQLJ stream class provides or
specifying the length to the constructor.

= Although not required, it is recommended that you close the
local input stream each time through the iterator processing
loop.

Stream Class Methods

In processing a SQL] stream column in a named or positional iterator, the local stream
variable used to receive the stream data can be either a SQL]J stream type or the
standard java.io.InputStreamor java.io.Reader type, as applicable. In either
case, standard methods of the input data object are supported.

If the local stream variable is a SQL]J stream type, BinaryStream or
CharacterStream, you have the option of either reading data directly from the SQL]J
stream object or retrieving the underlying InputStream or Reader object and
reading data from that.

Type Support 5-15

Support for Streams

Note: This is just a matter of preference. The former approach is
simpler. However, the latter approach involves more direct and
efficient data access.

Binary Stream Methods

The BinaryStream class is a subclass of the sglj.runtime.StreamWrapper class.
The StreamWrapper class provides the following key methods:

InputStream getInputStream(): You can optionally use this method to get
the underlying java. io. InputStream object. However, this is not required,
because you can also process SQL]J stream objects directly.

void setLength(int length): You can use this to set the 1ength attribute of
a SQLJ stream object. This is not necessary if you have already set 1length in
constructing the stream object, unless you want to change it for some reason.

The length attribute must be set to an appropriate value before you send a SQLJ
stream to the database.

int getLength (): This method returns the value of the 1ength attribute of a
SQLJ stream. This value is meaningful only if you explicitly set it using the stream
object constructor or the setLength () method. When you retrieve data into a
stream, the 1length attribute is not set automatically.

The sglj.runtime.StreamWrapper class is a subclass of the
java.io.FilterInputStream class, which is a subclass of the
java.io.InputStream class. The following important methods of the
InputStreamn class are supported by the SQL] BinaryStream class as well:

int read ():Reads the nextbyte of data from the input stream. The byte of
data is returned as an int value in the range 0 to 255. If the end of the stream has
already been reached, then the value -1 is returned. This method blocks program
execution until one of the following:

- Input data is available
— The end of the stream is detected
- An exception is thrown

int read (byte b[]):Readsup tob.length bytes of data from the input
stream, writing the data into the specified b [] byte array. It returns an int value
indicating how many bytes were read, or -1 if the end of the stream has already
been reached. This method blocks program execution until input is available.

int read (byte b[], int off, int len):Readsup to len bytes of data
from the input stream, starting at the byte specified by the offset, of £, and writing
the data into the specified b [] byte array. It returns an int value indicating how
many bytes were read, or -1 if the end of the stream has already been reached.
This method blocks until input is available.

long skip (long n):Skips over and discards n bytes of data from the input
stream. However, in some circumstances, this method will actually skip a smaller
number of bytes. It returns a 1ong value indicating the actual number of bytes
skipped.

void close(): Closes the stream and releases any associated resources.

Character Stream Methods
The CharacterStream class provides the following key methods:

5-16 Oracle Database SQLJ Developer’'s Guide and Reference

Support for Streams

= Reader getReader (): You can optionally use this method to get the underlying
java.io.Reader object. However, this is not required, because you can also
process SQL]J stream objects directly.

s void setLength(int length): You can use this method to set the length of
the stream object.

= int getLength(): You can use this method to get the length of the stream
object.

The sglj.runtime.CharacterStream classis a subclass of the
java.io.FilterReader class, which is a subclass of the java.io.Reader class.
The following important methods of the Reader class are supported by the SQLJ
CharacterStream class as well:

m int read ():Reads the next character of data from the reader. The data is
returned as an int value in the range 0 to 65535. If the end of the data has already
been reached, then the value -1 is returned. This method blocks program
execution until one of the following:

- Input data is available
— The end of the data is detected
- An exception is thrown

= int read (char cbuf[]):Reads charactersinto an array, writing the data into
the specified cbuf [] char array. It returns an int value indicating how many
characters were read, or -1 if the end of the data has already been reached. This
method blocks program execution until input is available.

s int read (char cbuf[], int off, int len):Readsup to len characters
of data from the input, starting at the character specified by the offset, of £, and
writing the data into the specified char [] char array. It returns an int value
indicating how many characters were read, or -1 if the end of the data has already
been reached. This method blocks until input is available.

s long skip (long n):Skips over and discards n characters of data from the
input. However, in some circumstances, this method will actually skip a smaller
number of characters. It returns a 1ong value indicating the actual number of
characters skipped.

s void close(): Closes the stream and releases any associated resources.

Examples of Retrieving and Processing Stream Data

This section provides examples of various scenarios of retrieving stream data, as
follows:

s Using a SELECT statement to select data from a LONG column and populate a SQL]
CharacterStream column in a named iterator, as shown in Example 5-1

s Using a SELECT statement to select data from a LONG RAW column and populate a
SQLJ BinaryStream column in a positional iterator, as shown in Example 5-2

Example 5-1 Selecting LONG Data into CharacterStream Column of Named Iterator

This example selects data from a LONG database column, populating a SQL]J
CharacterStream column in a named iterator.

Assume there is a table named FILETABLE with a VARCHAR?2 column called
FILENAME that contains file names and a LONG column called FILECONTENTS that
contains file contents in character format. The code is as follows:

Type Support 5-17

Support for Streams

import sqglj.runtime.*;
import java.io.*;

#sqgl iterator MyNamedIter (String filename, CharacterStream filecontents);

MyNamedIter namediter = null;
String fname;
CharacterStream charstream;
#sgl namediter = { SELECT filename, filecontents FROM filetable };
while (namediter.next()) {
fname = namediter.filename();
charstream = namediter.filecontents();
System.out.println("Contents for file " + fname + ":");
printStream(charstreamn) ;
charstream.close();

namediter.close();

public void printStream(Reader in) throws IOException

{
int character;
while ((character = in.read()) != -1) {
System.out.print ((char)character) ;

Remember that you can pass a SQLJ character stream to any method that takes a
standard java.io.Reader as an input parameter.

Example 5-2 : Selecting LONG RAW Data into BinaryStream Column of Positional
Iterator

This example selects data from a LONG RAW column, populating a SQL]J
BinaryStream column in a positional iterator.

As explained in the preceding section, there can be only one stream column in a
positional iterator and it must be the last column. Assume there is a table named
BINTABLE with a NUMBER column called IDENTIFIER and a LONG RAW column
called BINDATA that contains binary data associated with the identifier. The code is as
follows:

import sglj.runtime.*;

#sqgl iterator MyPosIter (int, BinaryStream);

MyPosIter positer = null;
int 1d=0;
BinaryStream binstream=null;
#sgl positer = { SELECT identifier, bindata FROM bintable };
while (true) {
#sqgl { FETCH :positer INTO :id, :binstream };
if (positer.endFetch()) break;

(...process data as desired...)
binstream.close();

}

positer.close();

5-18 Oracle Database SQLJ Developer’'s Guide and Reference

Support for Streams

SQLJ Stream Objects as Output Parameters and Function Return Values

As described in the preceding sections, standard SQLJ supports the use of the
BinaryStreamand CharacterStream classes in the sglj . runtime package for
retrieval of stream data into iterator columns.

In addition, the Oracle SQLJ implementation enables the following uses of the SQL]J
stream types if you use Oracle9i Database or later version, an Oracle JDBC driver,
Oracle-specific code generation or the Oracle customizer, and the Oracle SQLJ run
time:

s They can appear as OUT or INOUT host variables from a stored procedure or
function call.

s They can appear as the return value from a stored function call.

Streams as Stored Procedure Output Parameters

You can use the BinaryStream and CharacterStream types as the assignment
type for a stored procedure or stored function OUT or INOUT parameter.

Assume the following table definition:

CREATE TABLE streamexample (name VARCHAR2 (256), data LONG);

INSERT INTO streamexample (data, name)
VALUES
(*0000000000111111111112222222222333333333344444444445555555555",
'StreamExample') ;

Also, presume the following stored procedure definition, which uses the
STREAMEXAMPLE table:

CREATE OR REPLACE PROCEDURE out_longdata
(dataname VARCHAR2, longdata OUT LONG) IS
BEGIN
SELECT data INTO longdata FROM streamexample WHERE name = dataname;
END out_longdata;

The following sample code uses a call to the out_longdata stored procedure to read
the long data:

import sglj.runtime.*;

CharacterStream data;

#sqgl { CALL out_longdata('StreamExample', :0UT data) };

int c;

while ((c = data.read ()) !'= -1)
System.out.print ((char)c);

System.out.flush();

data.close();

Note: Closing the stream is recommended, but not required.

Type Support 5-19

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Streams as Stored Function Results

You can use the BinaryStream and CharacterStream types as the assignment
type for a stored function return result.

Assume the same STREAMEXAMPLE table definition as in the preceding stored
procedure example. Also, assume the following stored function definition, which uses
the STREAMEXAMPLE table:

CREATE OR REPLACE FUNCTION get_longdata (dataname VARCHAR2) RETURN long
IS longdata LONG;

BEGIN
SELECT data INTO longdata FROM streamexample WHERE name = dataname;
RETURN longdata;

END get_longdata;

The following sample code uses a call to the get_longdata stored function to read
the long data:

import sglj.runtime.*;

CharacterStream data;

#sqgl data = { VALUES(get_longdata('StreamExample')) };

int c;

while ((c = data.read ()) !'= -1)
System.out.print ((char)c);

System.out.flush();

data.close();

Note: Closing the stream is recommended, but not required.

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

The Oracle SQLJ implementation offers extended functionality for the following JDBC
2.0 and Oracle-specific data types:

= JDBC 2.0 large object (LOB) types (BLOB and CLOB)

s Oracle BFILE type

» Oracle ROWID type

s Oracle REF CURSOR types

s Other Oracle Database 11¢ data types, such as NUMBER and RAW

These data types are supported by classes in the oracle. sql package. LOBs and
binary files (BFILEs) are handled similarly in many ways, so are discussed together.
Additionally, the Oracle SQL] implementation offers extended support for the
standard BigDecimal JDBC type.

JDBC 2.0 functionality for user-defined SQL objects, object references, and collections
are also supported.

See Also: Chapter 6, "Objects, Collections, and OPAQUE Types"

Note that using Oracle extensions in your code requires the following;:

s Use one of the Oracle JDBC drivers.

5-20 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

= Use Oracle-specific code generation or for ISO code generation, customize the
profiles appropriately. The default customizer,
oracle.sglj.runtime.util.OraCustomizer, is recommended.

s Use the Oracle SQL] run time when your application runs.

The Oracle SQL]J run time and an Oracle JDBC driver are required whenever you use
the Oracle customizer, even if you do not actually use Oracle extensions in your code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqglj.checker.OracleChecker, acts as a front end and
will run the appropriate checker based on your environment. This will be one of the
Oracle-specific checkers if you are using an Oracle JDBC driver.

This section covers the following topics:

= Package oracle.sql

= Support for BLOB, CLOB, and BFILE

= Support for Oracle ROWID

= Support for Oracle REF CURSOR Types

= Support for Other Oracle Database 11g Data Types
» Extended Support for BigDecimal

Package oracle.sql

SQLJ users, as well as JDBC users, should be aware of the oracle.sqgl package,
which includes classes to support all the Oracle Database 11g data types, such as
oracle.sgl.ROWID, oracle.sqgl.CLOB, and oracle.sqgl .NUMBER. The
oracle.sql classes are wrappers for the raw SQL data and provide appropriate
mappings and conversion methods to Java formats. An oracle.sqgl. * object
contains a binary representation of the corresponding SQL data in the form of a byte
array. Each oracle.sql . * data type class is a subclass of the oracle.sqgl.Datum
class.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqglj.checker.OracleChecker, acts as a front end and
will run the appropriate checker based on your environment. This will be one of the
Oracle-specific checkers if you are using an Oracle JDBC driver.

See Also:

= "Connection Options" on page 8-25

= "Semantics-Checking and Offline-Parsing Options" on page 8-56
» Oracle Database JDBC Developer’s Guide and Reference

Support for BLOB, CLOB, and BFILE

The Oracle SQLJ and JDBC implementations support JDBC 2.0 LOB types and provide
similar support for the Oracle-specific BFILE type (read-only binary files stored
outside the database). These data types are supported by the following classes:

m oracle.sqgl.BLOB
m oracle.sqgl.CLOB
m oracle.sql.BFILE

These classes can be used in Oracle-specific SQL]J applications in the following ways:

Type Support 5-21

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

s As IN, OUT, or INOUT host variables in executable SQL]J statements and in
INTO-lists

s Asreturn values from stored function calls

= As column types in iterator declarations

See Also: Oracle Database JDBC Developer's Guide and Reference for
more information about LOBs and BFILEs and use of supported
stream APIs.

You can manipulate LOBs by using methods defined in the BLOB and CLOB classes,
which is recommended, or by using the procedures and functions defined in the
DBMS_LOB PL/SQL package. All procedures and functions defined in this package can
be called by SQLJ programs.

You can manipulate BFILEs by using methods defined in the BFILE class, which is
recommended, or by using the file-handling routines of the DBMS_LOB package.

Using methods of the BLOB, CLOB, and BFILE classes in a Java application is more
convenient than using the DBMS_LOB package and may also lead to faster execution in
some cases.

Note that the type of the chunk being read or written depends on the kind of LOB
being manipulated. For example, character large objects (CLOBs) contain character
data and, therefore, Java strings are used to hold chunks of data. Binary large objects
(BLOBs) contain binary data and, therefore, Java byte arrays are used to hold chunks
of data.

Note: The DBMS_LOB package requires a round trip to the server.
Methods in the BLOB, CLOB, and BFILE classes may also result in a
round trip to the server.

BFILE Class versus DBMS_LOB Functionality for BFILEs

Example 5-3 and Example 54 contrast use of the oracle. sqgl methods with use of
the DBMS_LOB package for BFILEs:

Example 5-3 Use of oracle.sql.BFILE File-Handling Methods with BFILE

This example manipulates a BFILE using file-handling methods of the
oracle.sgl.BFILE class.

BFILE openFile (BFILE file) throws SQLException
{
String dirAlias, name;
dirAlias = file.getDirAlias();
name = file.getName();
System.out.println("name: " + dirAlias + "/" + name);

if (!file.isFileOpen())
file.openFile();

}

return file;

5-22 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

The BFILE getDirAlias () and getName () methods construct the full path and file
name. The openFile () method opens the file. You cannot manipulate BFILEs until
they have been opened.

Example 5-4 Use of DBMS_LOB File-Handling Routines with BFILE

This example manipulates a BFILE using file-handling routines of the DBMS_LOB
package.

BFILE openFile(BFILE file) throws SQLException

{
String dirAlias, name;
#sqgl { CALL dbms_lob.filegetname(:file, :out dirAlias, :out name) };
System.out.println("name: " + dirAlias + "/" + name);

boolean isOpen;
#sgl isOpen = { VALUES (dbms_lob.fileisopen(:file)) };
if (!isOpen)
{
#sqgl { CALL dbms_lob.fileopen(:inout file) };
}

return file;

}

The openFile () method prints the name of a file object and then returns an opened
version of the file. Note that BFILEs can be manipulated only after being opened with
a call to DBMS_LOB . FILEOPEN or equivalent method in the BFILE class.

BLOB and CLOB Classes versus DBMS_LOB Functionality for LOBs

Example 5-5 and Example 5-6 contrast use of the oracle.sqgl methods with use of
the DBMS_LOB package for BLOBs, and Example 5-7 and Example 5-8 contrast use of
the oracle. sql methods with use of the DBMS_LOB package for CLOBs.

Example 5-5 Example: Use of oracle.sql.CLOB Read Methods with CLOB
This example reads data from a CLOB using methods of the oracle.sqgl.CLOB class.

void readFromClob(CLOB clob) throws SQLException
{

long clobLen, readLen;
String chunk;

clobLen = clob.length();

for (long i = 0; i < clobLen; i+= readLen) {
chunk = clob.getSubString(i, 10);
readLen = chunk.length();
System.out.println("read " + readLen + " chars: " + chunk);
}
}

This method contains a loop that reads from the CLOB and returns a 10-character Java
string each time. The loop continues until the entire CLOB has been read.

Example 5-6 Example: Use of DBMS_LOB Read Routines with CLOB
This example uses routines of the DBMS_LOB package to read from a CLOB.

void readFromClob(CLOB clob) throws SQLException
{

Type Support 5-23

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

long clobLen, readLen;
String chunk;

#sgl clobLen = { VALUES (dbms_lob.getlength(:clob)) };

for (long 1 = 1; 1 <= clobLen; i += readLen) {

readlLen = 10;
#sqgl { CALL dbms_lob.read(:clob, :inout readLen, :1i, :out chunk) };

System.out.println("read " + readLen + " chars: " + chunk);

}

This method reads the contents of a CLOB in chunks of 10 characters at a time. Note
that the chunk host variable is of the String type.

Example 5-7 Example: Use of oracle.sql.BLOB Write Routines with BLOB

This example writes data to a BLOB using methods of the oracle.sqgl.BLOB class.
Input a BLOB and specified length.

void writeToBlob (BLOB blob, long blobLen) throws SQLException
{

byte[] chunk = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

long chunkLen = (long)chunk.length;

for (long i = 0; i < blobLen; i+= chunkLen) {
if (blobLen < chunkLen) chunkLen = blobLen;
chunk([0] = (byte) (i+1);
chunkLen = blob.putBytes(i, chunk);
}
}

This method goes through a loop that writes to the BLOB in 10-byte chunks until the
specified BLOB length has been reached.

Example 5-8 Example: Use of DBMS_LOB Write Routines with BLOB
This example uses routines of the DBMS_LOB package to write to a BLOB.

void writeToBlob(BLOB blob, long blobLen) throws SQLException
{

byte[] chunk = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

long chunkLen = (long)chunk.length;

for (long i = 1; i <= blobLen; i += chunkLen) {
if ((blobLen - i + 1) < chunkLen) chunkLen =
chunk[0] = (byte)i;
#sqgl { CALL dbms_lob.write(:INOUT blob, :chunkLen, :i, :chunk) };

blobLen - i + 1;

}

This method fills the contents of a BLOB in 10-byte chunks. Note that the chunk host
variable is of the byte[] type.

LOB and BFILE Stored Function Results

Host variables of the BLOB, CLOB, and BFILE type can be assigned to the result of a
stored function call. The following example is for a CLOB, but code for BLOBs and
BFILEs would be functionally the same.

First, presume the following function definition:

5-24 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

CREATE OR REPLACE FUNCTION longer_clob (cl CLOB, c2 CLOB) RETURN CLOB IS
result CLOB;

BEGIN
IF dbms_lob.getLength(c2) > dbms_lob.getLength(cl) THEN
result := c2;
ELSE
result := cl;
END IF;

RETURN result;
END longer_clob;

The following example uses a CLOB as the assignment type for a return value from the
longer_clob function:

void readFromLongest (CLOB cl, CLOB c2) throws SQLException
{
CLOB longest;
#sgl longest = { VALUES(longer_clob(:cl, :c2)) };
readFromClob (longest) ;
}

The readFromLongest () method prints the contents of the longer passed CLOB,
using the readFromClob () method defined previously.

LOB and BFILE Host Variables and SELECT INTO Targets

Host variables of the BLOB, CLOB, and BFILE type can appear in the INTO-list of a
SELECT INTO executable statement. The following example is for a BLOB and CLOB,
but code for BFILEs would be functionally the same.

Assume the following table definition:

CREATE TABLE basic_lob_table(x VARCHAR2 (30), b BLOB, c¢ CLOB);
INSERT INTO basic_lob_table

VALUES ('one', '010101010101010101010101010101"', 'onetwothreefour');
INSERT INTO basic_lob_table

VALUES('two', '020202020202020202020202020202"', 'twothreefourfivesix');

The following example uses a BLOB and a CLOB as host variables that receive data
from the table defined, using a SELECT INTO statement:

BLOB blob;
CLOB clob;
#sqgl { SELECT one.b, two.c INTO :blob, :clob
FROM basic_lob_table one, basic_lob_table two
WHERE one.x='one' AND two.x='two' };
#sqgl { INSERT INTO basic_lob_table VALUES('three', :blob, :clob) };

This example selects the BLOB from the first row and the CLOB from the second row
of BASIC_LOB_TABLE. It then inserts a third row into the table using the BLOB and
CLOB selected in the previous operation.

LOBs and BFILEs in Iterator Declarations

The BLOB, CLOB, and BFILE types can be used as column types for SQL]J positional
and named iterators. Such iterators can be populated as a result of compatible
executable SQLJ operations.

Following are sample declarations:

Type Support 5-25

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

#sgl iterator NamedLOBIter (CLOB c);
#sql iterator PositionedLOBIter (BLOB) ;
#sqgl iterator NamedFILEIter (BFILE bf);

LOB and BFILE Host Variables and Named Iterator Results

The following example uses the BASTC_LOB_TABLE table and the
readFromLongest () method defined in previous examples and a CLOB in a named
iterator. Similar code could be written for BLOBs and BFILEs.

#sql iterator NamedLOBIter (CLOB c);

NamedLOBIter iter;
#sqgl iter = { SELECT c¢ FROM basic_lob_table };
if (iter.next())
CLOB cl = iter.c();
if (iter.next())
CLOB c2 = iter.c();
iter.close();
readFromLongest (cl, c2);

This example uses an iterator to select two CLOBs from the first two rows of
BASIC_LOB_TABLE, then prints the larger of the two using the readFromLongest ()
method.

LOB and BFILE Host Variables and Positional lterator FETCH INTO Targets
Host variables of the BLOB, CLOB, and BFILE type can be used with positional
iterators and appear in the INTO-list of the associated FETCH INTO statement if the
corresponding column attribute in the iterator is of the identical type.

The following example uses the BASIC_LOB_TABLE table and the writeToBlob ()
method defined in previous examples. Similar code could be written for CLOBs and
BFILEs.

#sql iterator PositionedLOBIter (BLOB) ;

PositionedLOBIter iter;
BLOB blob = null;
#sql iter = { SELECT b FROM basic_lob_table };
for (long rowNum = 1; ; rowNum++)
{
#sqgl { FETCH :iter INTO :blob };
if (iter.endFetch()) break;
writeToBlob(blob, 512*rowNum) ;
}

iter.close();

This example calls writeToBlob () for each BLOB in BASTC_LOB_TABLE. Each row
writes an additional 512 bytes of data.

Support for Oracle ROWID

The Oracle-specific ROWID type stores the unique address for each row in a database
table. The oracle.sqgl.ROWID class wraps ROWID information and is used to bind
and define variables of the ROWID type.

5-26 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Variables of the oracle.sgl.ROWID type can be used in SQL] applications
connecting to Oracle Database 11g in the following ways:

s As IN, OUT or INOUT host variables in SQL]J executable statements and in
INTO-lists

s As areturn value from a stored function call

= As column types in iterator declarations

ROWIDs in Iterator Declarations

You can use oracle.sgl.ROWID as a column type for SQL]J positional and named
iterators, as shown in the following declarations:

#sql iterator NamedRowidIter (String ename, ROWID rowid);

#sql iterator PositionedRowidIter (String, ROWID);

ROWID Host Variables and Named-lterator SELECT Results

You can use ROWID objects as IN, OUT and INOUT parameters in SQLJ executable
statements. In addition, you can populate iterators whose columns include ROWID
types. This code example uses the preceding example declarations.

#sql iterator NamedRowidIter (String ename, ROWID rowid);

NamedRowidIter iter;

ROWID rowid;

#sqgl iter = { SELECT ename, rowid FROM emp };
while (iter.next())

{
if (iter.ename().equals ("CHUCK TURNER"))

rowid = iter.rowid();
#sgl { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };

}

iter.close();

This example increases the salary of the employee named Chuck Turner by $500
according to the ROWID.

ROWID Stored Function Results
Consider the following function:

CREATE OR REPLACE FUNCTION get_rowid (name VARCHAR2) RETURN ROWID IS
rid ROWID;

BEGIN
SELECT rowid INTO rid FROM emp WHERE ename = name;
RETURN rid;

END get_rowid;

Given the preceding stored function, the following example indicates how a ROWID
object is used as the assignment type for the function return result:

ROWID rowid;
#sqgl rowid = { values(get_rowid('AMY FEINER')) };
#sqgl { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };

Type Support 5-27

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

This example increases the salary of the employee named Amy Feiner by $500
according to the ROWID.

ROWID SELECT INTO Targets

Host variables of the ROWID type can appear in the INTO-list of a SELECT INTO
statement.

ROWID rowid;
#sgl { SELECT rowid INTO :rowid FROM emp WHERE ename='CHUCK TURNER' };
#sqgl { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };

This example increases the salary of the employee named Chuck Turner by $500
according to the ROWID.

ROWID Host Variables and Positional Iterator FETCH INTO Targets

Host variables of the ROWID type can appear in the INTO-list of a FETCH INTO
statement if the corresponding column attribute in the iterator is of the identical type.

#sql iterator PositionedRowidIter (String, ROWID);

PositionedRowidIter iter;
ROWID rowid = null;
String ename = null;
#sqgl iter = { SELECT ename, rowid FROM emp };
while (true)
{
#sqgql { FETCH :iter INTO :ename, :rowid };
if (iter.endFetch()) break;
if (ename.equals ("CHUCK TURNER"))
{
#sqgl { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };
}
}
iter.close();

This example is similar to the previous named iterator example, but uses a positional
iterator with its customary FETCH INTO syntax.

Positioned Update and Delete

In Oracle Database 11g release 1 (11.1), SQLJ supports positioned update and delete
operations. A positioned update or delete operation can be done using an iterator. The
iterator used for positioned update or delete should implement the
sqlj.runtime.ForUpdate interface. You can use a named iterator, positional
iterator, or scrollable iterator.

The following code illustrates a positioned update:

#sqgl iterator iter implements sqglj.runtime.ForUpdate(String str)
#sql iter = {SELECT ename FROM emp WHERE dpetno=10};
while(iter.next())

{

#sql {UPDATE emp SET sal=sal+5000 WHERE CURRENT OF :iter};
}

5-28 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

In the preceding code, an iterator iter is created and used to update the emp table.

Note: If you want to avoid synchronization problems, then issue a
SELECT ... FOR UPDATE statement.

You an similarly perform a positioned delete. For example:

#sgl (DELETE FROM emp WHERE CURRENT OF :iter}

In the preceding example, iter is an iterator used to perform positioned delete.

The iterators that can be used with the WHERE CURRENT OF clause have the following
limitations:

» The query used to populate the iterator should not operate on multiple tables.
= You cannot use a PL/SQL procedure returning a REF CURSOR with the iterator.

= You cannot use an iterator that has been populated from a result set. That is, an
iterator populated using the following statement, where rs is a result set:

#sql iter = {cast :rs}

Support for Oracle REF CURSOR Types

Oracle PL/SQL and the Oracle SQLJ implementation support the use of cursor
variables that represent database cursors.

Overview of REF CURSOR Types

Cursor variables are functionally equivalent to JDBC result sets, essentially
encapsulating the results of a query. A cursor variable is often referred to as a REF
CURSOR, but REF CURSOR itself is a type specifier, and not a type name. Instead,
named REF CURSOR types must be specified. The following example shows a REF
CURSOR type specification:

TYPE EmpCurType IS REF CURSOR;

Stored procedures and stored functions can return parameters of Oracle REF CURSOR
types. You must use PL/SQL to return a REF CURSOR parameter. You cannot
accomplish this using SQL alone. A PL/SQL stored procedure or function can declare
a variable of some named REF CURSOR type, execute a SELECT statement, and return
the results in the REF CURSOR variable.

See Also: Oracle Database PL/SQL User’s Guide and Reference

REF CURSOR Types in SQLJ

In the Oracle SQL] implementation, a REF CURSOR type can be mapped to iterator
columns or host variables of any iterator class type or of the java.sqgl.ResultSet
type, but host variables can be OUT only. Support for REF CURSOR types can be
summarized as follows:

= Asresult expressions for stored function returns

= As output host expressions for stored procedure or function output parameters

Type Support 5-29

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

= As output host expressions in INTO-lists
= Asiterator columns

You can use the SQL CURSOR operator for a nested SELECT within an outer SELECT
statement. This is how you can write a REF CURSOR object to an iterator column or
ResultSet column in an iterator, or write a REF CURSOR object to an iterator host
variable or ResultSet host variable in an INTO-list.

See Also: "Using Iterators and Result Sets as Host Variables" on
page 4-37 for examples illustrating the use of implicit REF CURSOR
variables, including an example of the CURSOR operator.

Notes:

s Use the type code OracleTypes.CURSOR for REF CURSOR
types.

s Thereisno oracle. sqgl class for REF CURSOR types. Use
either java.sqgl.ResultSet or an iterator class. Close the
result set or iterator to release resources when you are done
processing it.

REF CURSOR Example
The following sample method shows a REF CURSOR type being retrieved from an
anonymous block:

private static EmpIter refCursInAnonBlock (String name, int no)
throws java.sqgl.SQLException {
EmpIter emps = null;

System.out.println("Using anonymous block for ref cursor..");
#sql { begin
INSERT INTO emp (ename, empno) VALUES (:name, :no);
OPEN :out emps FOR SELECT ename, empno FROM emp ORDER BY empno;
end
I
return emps;

}

Support for Other Oracle Database 11g Data Types

All oracle. sgl classes can be used for iterator columns or for input, output, or
input-output host variables in the same way that any standard Java type can be used.
This includes the classes mentioned in the preceding sections and others, such as the
oracle.sgl.NUMBER, oracle.sqgl.CHAR, and oracle.sqgl .RAW classes.

Because the oracle.sqgl. * classes do not require conversion to Java type format,
they offer greater efficiency and precision than equivalent Java types. You would have
to convert the data to standard Java types, however, to use it with standard Java
programs or to display it to end users.

Extended Support for BigDecimal

SQLJ supports java.math.BigDecimal in the following situations:

s Ashost variables in SQL]J executable statements

5-30 Oracle Database SQLJ Developer’'s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

s Asreturn values from stored function calls
= Asiterator column types

Standard SQLJ has the limitation that a value can be retrieved as BigDecimal only if
that is the JDBC default mapping, which is the case only for numeric and decimal data.

See Also: Table 5-1, " Type Mappings for Supported Host
Expression Types"

In the Oracle SQLJ implementation, however, you can map to nondefault types as long
as the data type is convertible from numeric and you use Oracle9i Database or later
version, an Oracle JDBC driver, Oracle-specific code generation or the Oracle
customizer, and the Oracle SQL]J run time. The CHAR, VARCHAR2, LONG, and NUMBER
types are convertible. For example, you can retrieve data from a CHAR column into a
BigDecimal variable. However, to avoid errors, you must be careful that the
character data consists only of numbers.

Note: The BigDecimal class is in the standard java.math
package.

Type Support 5-31

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

5-32 Oracle Database SQLJ Developer’'s Guide and Reference

6

Obijects, Collections, and OPAQUE Types

This chapter discusses how the Oracle SQL]J implementation supports user-defined
SQL types. This includes discussion of the Oracle JPublisher utility, which you can use
to generate Java classes corresponding to user-defined SQL types. There is also a small
section at the end regarding Oracle OPAQUIE types.

The chapter consists of the following sections:

Oracle Objects and Collections

Custom Java Classes

User-Defined Types

JPublisher and the Creation of Custom Java Classes

Strongly Typed Objects and References in SQLJ Executable Statements
Strongly Typed Collections in SQL]J Executable Statements

Serialized Java Objects

Weakly Typed Objects, References, and Collections

Oracle OPAQUE Types

Oracle Objects and Collections

This section provides some background conceptual information about Oracle Database
11g objects and collections.

See Also: Oracle Database SQL Reference and Oracle Database
Application Developer’s Guide - Fundamentals.

This section covers the following topics:

Introduction to Objects and Collections
Oracle Object Fundamentals
Oracle Collection Fundamentals

Object and Collection Data Types

Introduction to Objects and Collections

The Oracle SQL] implementation supports user-defined SQL object types, which are
composite data structures, related SQL object reference types, and user-defined SQL

Objects, Collections, and OPAQUE Types 6-1

Oracle Objects and Collections

collection types. Oracle objects and collections are composite data structures consisting
of individual data elements.

The Oracle SQL] implementation supports either strongly typed or weakly typed Java
representations of object types, reference types, and collection types to use in iterators
or host expressions. Strongly typed representations use a custom Java class that maps
to a particular object type, reference type, or collection type and must implement
either the Java Database Connectivity (JDBC) 2.0 standard java.sql.SQLData
interface, for object types only, or the Oracle oracle.sql.ORAData interface. Either
paradigm is supported by the Oracle Database 11g JPublisher utility, which you can
use to automatically generate custom Java classes.

The term strongly typed is used where a particular Java type is associated with a
particular SQL named type or user-defined type. For example, if there is a PERSON
type, then a corresponding Person Java class will be associated with it.

Weakly typed representations use oracle.sqgl . STRUCT for objects,
oracle.sql.REF for object references, or oracle.sqgl .ARRAY for collections.
Alternatively, you can use standard java.sqgl.Struct, java.sqgl.Ref, or
java.sqgl.Array objects in a weakly typed scenario.

The term weakly typed is used where a Java type is used in a generic way and can
map to multiple SQL named types. The Java class or interface has no special
information particular to any SQL type. This is the case for the oracle.sqgl.STRUCT,
oracle.sql.REF, and oracle.sqgl.ARRAY types and the java.sqgl.Struct,
java.sgl.Ref, and java.sqgl.Array types.

Note that using Oracle extensions in your code requires the following;:
= Use one of the Oracle JDBC drivers.

s Use default Oracle-specific code generation or, for ISO code generation, customize
the profiles appropriately. For Oracle-specific generated code, no profiles are
produced so customization is not applicable. Oracle JDBC application
programming interfaces (APIs) are called directly through the generated Java
code.

Note: Oracle recommends the use of the default customizer,
oracle.sglj.runtime.util.OraCustomizer.

= Use the Oracle SQLJ run time when your application runs. The Oracle SQL] run
time and an Oracle JDBC driver are required whenever you use the Oracle
customizer, even if you do not actually use Oracle extensions in your code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqglj.checker.OracleChecker, acts as a front end and
will run the appropriate checker based on your environment. This will be one of the
Oracle-specific checkers if you are using an Oracle JDBC driver.

Note: Oracle-specific types for Oracle objects and collections are
included in the oracle. sql package.

See Also: "Connection Options" on page 8-25 and
"Semantics-Checking and Offline-Parsing Options" on page 8-56

6-2 Oracle Database SQLJ Developer’s Guide and Reference

Oracle Objects and Collections

Custom Java Class Usage Notes

s This chapter primarily discusses the use of custom Java classes with user-defined
types. However, classes implementing ORAData can be used for other Oracle SQL
types as well. A class implementing ORAData can be used to perform any kind of
desired processing or conversion in the course of transferring data between SQL
and Java.

See Also: "Additional Uses for ORAData Implementations" on
page 6-13

s The SQLData interface is intended only for custom object classes. The ORAData
interface can be used for any custom Java class.

Terminology Notes

= User-defined SQL object types and user-defined SQL collection types are referred
to as user-defined types (UDTs).

= Custom Java classes for objects, references, and collections are referred to as
custom object classes, custom reference classes, and custom collection classes,
respectively.

See Also: Oracle Database Application Developer’s Guide -
Object-Relational Features for general information about Oracle object
features and functionality

Oracle Object Fundamentals

The Oracle SQL objects are composite data structures that group related data items,
such as facts about each employee, into a single data unit. An object type is
functionally similar to a Java class. You can populate and use any number of
individual objects of a given object type, just as you can instantiate and use individual
objects of a Java class.

For example, you can define an object type EMPLOYEE that has the attributes name of
type CHAR, address of type CHAR, phonenumber of type CHAR, and
employeenumber of type NUMBER.

Oracle objects can also have methods, or stored procedures, associated with the object
type. These methods can be either static methods or instance methods and can be
implemented either in PL/SQL or Java. Their signatures can include any number of
input, output, or input-output parameters. All this depends on how they are initially
defined

Oracle Collection Fundamentals
There are two categories of Oracle SQL collections:
= Variable-length arrays (VARRAY types)
= Nested tables (TABLE types)

Both categories are one-dimensional, although the elements can be complex object
types. VARRAY types are used for one-dimensional arrays, and nested table types are
used for single-column tables within an outer table. A variable of any VARRAY type
can be referred to as a VARRAY. A variable of any nested table type can be referred to
as a nested table.

A VARRAY, as with any array, is an ordered set of data elements, with each element
having an index and all elements being of the same data type. The size of a VARRAY

Objects, Collections, and OPAQUE Types 6-3

Custom Java Classes

refers to the maximum number of elements. Oracle VARRAYS, as indicated by their
name, are of variable size, but the maximum size of any particular VARRAY type must
be specified when the VARRAY type is declared.

A nested table is an unordered set of elements. Nested table elements within a table
can themselves be queried in SQL. A nested table, as with any table, is not created
with any particular number of rows. This is determined dynamically.

Notes: The elements in a VARRAY or the rows in a nested table
can be of a user-defined object type, and VARRAY and nested table
types can be used for attributes in a user-defined object type. Oracle
Database 11¢ supports nesting of collection types. The elements of a
VARRAY or rows of a nested table can be of another VARRAY or
nested table type, or these elements can be of a user-defined object
type that has VARRAY or nested table attributes.

Object and Collection Data Types

In Oracle Database 11g, user-defined object and collection definitions function as SQL
data type definitions. You can use these data types, as with any other data type, in
defining table columns, SQL object attributes, and stored procedure or function
parameters. In addition, once you have defined an object type, the related object
reference type can be used as any other SQL reference type.

For example, consider the EMPLOYEE Oracle object described in the preceding section.
Once you have defined this object, it becomes an Oracle data type. You can have a
table column of type EMPLOYEE just as you can have a table column of type NUMBER.
Each row in an EMPLOYEE column contains a complete EMPLOYEE object. You can also
have a column type of REF EMPLOYEE, consisting of references to EMPLOYEE objects.

Similarly, you can define a variable-length array MYVARR as VARRAY (10) of NUMBER
and a nested table NTBL of CHAR (20) . The MYVARR and NTBL collection types become
Oracle data types, and you can have table columns of either type. Each row of a
MYVARR column consists of an array of up to 10 numbers. Each row of an NTBL
column consists of 20 characters.

Custom Java Classes

Custom Java classes are first-class types that you can use to read from and write to
user-defined SQL types transparently. The purpose of custom Java classes is to provide
a way to convert data between SQL and Java and make the data accessible,
particularly in supporting objects and collections or if you want to perform custom
data conversions.

It is generally advisable to provide custom Java classes for all user-defined types that
you use in a SQLJ application. The Oracle JDBC driver will use instances of these
classes in converting data, which is more convenient and less error-prone than using
the weakly typed oracle.sgl.STRUCT, oracle.sgl.REF, and
oracle.sqgl.ARRAY classes.

To be used in SQLJ iterators or host expressions, a custom Java class must implement
either the oracle.sgl.ORAData and oracle.sqgl.ORADataFactory interfaces or
the standard java.sqgl.SQLData interface. This section provides an overview of
these interfaces and custom Java class functionality, covering the following topics:

= Custom Java Class Interface Specifications

s Custom Java Class Support for Object Methods

6-4 Oracle Database SQLJ Developer's Guide and Reference

Custom Java Classes

s Custom Java Class Requirements

s Compiling Custom Java Classes

= Reading and Writing Custom Data

= Additional Uses for ORAData Implementations

Custom Java Class Interface Specifications

This section discusses specifications of the ORAData and ORADataFactory interfaces
and the standard SQLData interface.

Oracle Database 11g includes a set of APIs for Oracle-specific custom Java class
functionality for user-defined types: oracle.sqgl.ORAData and
oracle.sqgl.ORADataFactory.

The oracle.sgl.CustomDatumand oracle.sgl.CustomDatumFactory
interfaces used previously for this functionality are deprecated (as of Oracle%i), but
still supported for backward compatibility. You must use the CustomDatum interfaces
if you are working with an Oracle8i JDBC driver.

ORAData and ORADataFactory Specifications

Oracle provides the oracle. sgl.ORAData interface and the related
oracle.sqgl.ORADataFactory interface to use in mapping and converting Oracle
object types, reference types, and collection types to custom Java classes.

Data is sent or retrieved in the form of an oracle. sql.Datum object, with the
underlying data being in the format of the appropriate oracle.sqgl.Datum subclass,
such as oracle.sqgl.STRUCT. This data is still in its SQL format. The
oracle.sqgl.Datum object is just a wrapper.

See Also: Oracle Database [DBC Developer’s Guide and Reference

The ORAData interface specifies a toDatum () method for data conversion from Java
format to SQL format. This method takes as input your connection object and converts
data to the appropriate oracle. sgl. * representation. The connection object is
necessary so that the JDBC driver can perform appropriate type checking and type
conversions at run time. The ORAData and toDatum () specification is as follows:

interface oracle.sql.ORAData

{

oracle.sqgl.Datum toDatum(java.sqgl.Connection c) throws SQLException;

}

The ORADataFactory interface specifies a create () method that constructs
instances of your custom Java class, converting from SQL format to Java format. This
method takes as input a Datum object containing the data and a type code, such as
OracleTypes.RAW, indicating the SQL type of the underlying data. It returns an
object of your custom Java class, which implements the ORAData interface. This object
receives its data from the Datum object that was input. The ORADataFactory and
create () specification is as follows:

interface oracle.sqgl.ORADataFactory

{
oracle.sqgl.ORAData create(oracle.sgl.Datum d, int sqglType)
throws SQLException;

Objects, Collections, and OPAQUE Types 6-5

Custom Java Classes

To complete the relationship between the ORAData and ORADataFactory interfaces,
you must implement a static getORADataFactory () method in any custom Java
class that implements the ORAData interface. This method returns an object that
implements the ORADataFactory interface and that, therefore, can be used to create
instances of your custom Java class. This returned object can itself be an instance of
your custom Java class, and its create () method is used by the Oracle JDBC driver
to produce further instances of your custom Java class, as necessary.

Note: JPublisher output implements the ORAData interface and
its toDatum () method and the ORADataFactory interface and its
create () method in a single custom Java class. However,
toDatum () and create () are specified in different interfaces to
allow the option of implementing them in separate classes. You can
have one custom Java class that implements ORAData, its
toDatum () method, and the getORADataFactory () method,
and have a separate factory class that implements
ORADataFactory and its create () method. For purposes of
discussion here, however, the assumption is that both interfaces are
implemented in a single class.

See Also: "Oracle Requirements for Classes Implementing
ORAData" on page 6-8

If you use JPublisher, then specifying -~usertypes=oracle will result in JPublisher
generating custom Java classes that implement the ORAData and ORADataFactory
interfaces and the getORADataFactory () method. For backward compatibility, you
have the option of using the JPublisher -compatible option in conjunction with
-usertypes=oracle to use the CustomDatum and CustomDatumFactory
interfaces instead.

See Also: Oracle Database [Publisher User’s Guide

ORAData Versus CustomDatum Interfaces

The oracle. jdbc interfaces were introduced in Oracle9i Database as replacements
for the oracle. jdbc.driver classes. As a result, the oracle.sqgl.CustomDatum
and oracle.sgl.CustomDatumFactory interfaces, formerly used to access
customized objects, are deprecated in favor of the oracle.sqgl.ORAData and
oracle.sqgl.ORADataFactory interfaces. Like the CustombDatum interfaces, these
can be used as an Oracle-specific alternative to the standard SQLData interface. The
CustomDatum interfaces are still supported for backward compatibility.

CustomDatum and CustomDatumFactory have the following definitions:

public interface CustomDatum
{
oracle.sqgl.Datum toDatum(
oracle.jdbc.driver.OracleConnection conn
) throws SQLException;

public interface CustomDatumFactory
{
oracle.sgl.CustomDatum create(
oracle.sqgl.Datum d, int sqlType
) throws SQLException;

6-6 Oracle Database SQLJ Developer's Guide and Reference

Custom Java Classes

The connection conn and type code sqlType are used as described for ORAData and
ORADataFactory. Note, however, that CustomDatum uses the Oracle-specific
OracleConnection type instead of the standard Connection type.

SQLData Specification

Standard JDBC 2.0 supplies the java.sql.SQLData interface to use in mapping and
converting structured object types to Java classes. This interface is intended for
mapping structured object types only, not object references, collections or arrays, or
other SQL types.

The SQLData interface is a JDBC 2.0 standard, specifying a readsQL () method to
read data into a Java object and a writeSQL () method to write to the database from a
Java object. If you use JPublisher, then specifying -~usertypes=jdbc will result in
JPublisher generating custom Java classes that implement the SQLData interface.

For additional information about standard SQLData functionality, refer to the Sun
Microsystems JDBC 2.0 or later API specification.

See Also: "Requirements for Classes Implementing SQLData" on
page 6-10

Custom Java Class Support for Object Methods

Methods of Oracle objects can be invoked from custom Java class wrappers. Whether
the underlying stored procedure is written in PL/SQL or is written in Java and
published to SQL is invisible to the user.

A Java wrapper method used to invoke a server method requires a connection to
communicate with the server. The connection object can be provided as an explicit
parameter or can be associated in some other way. For example, as an attribute of your
custom Java class. If the connection object used by the wrapper method is a non-static
attribute, then the wrapper method must be an instance method of the custom Java
class in order to have access to the connection. Custom Java classes generated by
JPublisher use this technique.

There are also issues regarding output and input-output parameters in methods of
Oracle objects. If a stored procedure, that is, a SQL object method, modifies the
internal state of one of its arguments, then the actual argument passed to the stored
procedure is modified. In Java this is not possible. When a JDBC output parameter is
returned from a stored procedure call, it must be stored in a newly created object. The
original object identity is lost.

One way to return an output or input-output parameter to the caller is to pass the
parameter as an element of an array. If the parameter is input-output, then the
wrapper method takes the array element as input. After processing, the wrapper
assigns the output to the array element. Custom Java classes generated by JPublisher
use this technique, with each output or input-output parameter being passed in a
one-element array.

When you use JPublisher, it implements wrapper methods by default. This is true for
generated classes implementing either the SQLData interface or the ORAData
interface. To disable this feature, set the JPublisher -methods flag to false.

See Also: Oracle Database JPublisher User's Guide

Objects, Collections, and OPAQUE Types 6-7

Custom Java Classes

Note: If you are implementing a custom Java class, then there are
various ways that you can implement wrapper methods. Data
processing in the server can be done either through the SQL object
method directly or by forwarding the object value from the client to
the server and then executing the method there. To see how
JPublisher implements wrapper methods, and whether this may
meet your needs, refer to "J[Publisher Implementation of Wrapper
Methods" on page 6-33.

Custom Java Class Requirements

Custom Java classes must satisfy certain requirements to be recognized by the Oracle
SQL]J translator as valid host variable types and to enable type-checking by the
translator.

Note: Custom Java classes for user-defined types are often
referred to in this manual as "wrapper classes".

Oracle Requirements for Classes Implementing ORAData

Oracle requirements for ORAData implementations are primarily the same for any
kind of custom Java class, but vary slightly depending on whether the class is for
mapping to objects, object references, collections, or some other SQL type.

These requirements are as follows:
= The class implements the oracle.sqgl.ORAData interface.

» The class implements the getORADataFactory () method that returns an
oracle.sqgl.ORADataFactory object. The method signature is as follows:

public static oracle.sql.ORADataFactory getORADataFactory();
If using the deprecated CustombDatum interface, then the class implements the

getFactory () method that returns an oracle.sqgl.CustomDatumFactory
object. The method signature is as follows:

public static oracle.sqgl.CustomDatumFactory getFactory();
s The class has a String constant, _SQL_TYPECODE, initialized to the

oracle. jdbc.OracleTypes type code of the Datum subclass instance that
toDatum () returns. The type code is:

— For custom object classes:

public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

— For custom reference classes:

public static final int _SQL_TYPECODE = OracleTypes.REF;

- For custom collection classes:
public static final int _SQL_TYPECODE = OracleTypes.ARRAY;
For other uses, some other type code might be appropriate. For example, for using

a custom Java class to serialize and deserialize Java objects into or out of RAW
fields, a _SQL_TYPECODE of OracleTypes .RAW is used.

6-8 Oracle Database SQLJ Developer's Guide and Reference

Custom Java Classes

Note: The OracleTypes class simply defines a type code, which is
an integer constant, for each Oracle data type. For standard SQL
types, the OracleTypes entry is identical to the entry in the standard
java.sql.Types type definitions class.

See Also: "Serialized Java Objects" on page 6-50

For custom Java classes with _SQI._ TYPECODE of STRUCT, REF, or ARRAY, that is,
for custom Java classes that represent objects, object references, or collections, the
class has a constant that indicates the relevant user-defined type name. This is as
follows:

— Custom object classes and custom collection classes must have a String
constant, _SQL_NAME, initialized to the SQL name you declared for the
user-defined type, as follows:

public static final String _SQL_NAME = UDT name;
For example, the custom object class for a user-defined PERSON object will
have the constant:

public static final String _SQL_NAME = "PERSON";

The same can be specified along with the schema, if appropriate, as follows:
public static final String _SQL_NAME = "SCOTT.PERSON";
The custom collection class for a collection of PERSON objects, which you have
declared as PERSON_ARRAY, will have the constant:
public static final String _SQL_NAME = "PERSON_ARRAY";

— Custom reference classes must have a String constant, _SQIL_BASETYPE,

initialized to the SQL name you declared for the user-defined type being
referenced, as follows:

public static final String _SQL_BASETYPE = UDT name;

The custom reference class for PERSON references will have the constant:

public static final String _SQL_BASETYPE = "PERSON";

For other ORAData uses, specifying a UDT name is not applicable.

Keep in mind the following usage notes:

A collection type name reflects the collection type, not the base type. For example,
if you have declared a VARRAY or nested table type, PERSON_ARRAY, for PERSON
objects, then the name of the collection type that you specify for the _SQL_NAME
entry is PERSON_ARRAY, not PERSON.

When specifying the SQL type in a _SQL_NAME field, if the SQL type was declared
in a case-sensitive way (in quotes), then you must specify the SQL name exactly as
it was declared, such as CaseSensitive or SCOTT.CaseSensitive. Note that
this differs from usage in a JPublisher input file, where the case-sensitive name
must also appear in quotes. If you did not declare the SQL type in a case-sensitive
way, that is, without no quotes, then you must specify the SQL name in all
uppercase, such as ADDRESS or SCOTT . ADDRESS.

Objects, Collections, and OPAQUE Types 6-9

Custom Java Classes

JPublisher automatically generates the value of this field appropriately, according
to case-sensitivity and the JPublisher —omit_schema_names setting, if
applicable.

Requirements for Classes Implementing SQLData

The ISO SQL]J standard outlines requirements for type map definitions for classes
implementing the SQLData interface. Alternatively, SQLData wrapper classes can
identify associated SQL object types through the public static final fields.

Be aware of the following important points:

= Whether you use a type map or use alternative (non-standard) public static
final fields to specify mappings, you must be consistent in your approach. Either
use a type map that specifies all relevant mappings so that you do not require the
public static final fields, or do not use a type map at all and specify all
mappings through the public static final fields.

= SQLData, unlike ORAData, is for mapping structured object types only. It is not
for object references, collections or arrays, or any other SQL types. If you are not
using ORAData, then your only choices for mapping object references and
collections are the weak java.sqgl.Ref and java.sql.Array types,
respectively, or oracle.sqgl.REF and oracle.sqgl.ARRAY.

= SQLData implementations require a Java Development Kit (JDK) 1.2.x or later
environment.

= When specifying the mapping from a SQL type to a Java type, if the SQL type was
declared in a case-sensitive way, then you must specify the SQL name exactly as it
was declared, such as CaseSensitive or SCOTT.CaseSensitive. Note that
this differs from usage in a JPublisher input file, where the case-sensitive name
must also appear in quotes. If you did not declare the SQL type in a case-sensitive
way, then you must specify the SQL name in all uppercase, such as ADDRESS or
SCOTT.ADDRESS.

Mapping Specified in Type Map Resource

First, consider the mapping representation according to the ISO SQL]J standard.
Assume that Address, pack.Person, and pack.Manager . InnerPM, where
InnerPMis an inner class of Manager, are three wrapper classes that implement
java.sgl.SQLData.

Then, you need to consider the following:

= You must use these classes only in statements that use explicit connection context
instances of a declared connection context type. For example, assuming that this
type is called SDContext:

Address a =...;

pack.Person D =...;
pack.Manager.InnerPM pm =...;

SDContext ctx = new SDContext (url,user,pwd, false);
#sqgl [ctx] { ... :a ... :p ... :pm ... };

= The connection context type must have been declared using the with attribute
typeMap that specifies an associated class implementing
java.util.PropertyResourceBundle. In the preceding example,
SDContext may be declared as follows:

#sqgl public static context SDContext with (typeMap="SDMap") ;

6-10 Oracle Database SQLJ Developer’'s Guide and Reference

Custom Java Classes

The type map resource must provide the mapping from SQL object types to
corresponding Java classes that implement the java.sqgl.SQLData interface.
This mapping is specified with entries of the following form:

class.java_class_name=STRUCT sqgl_type_name
The STRUCT keyword can also be omitted. In the example, the
SDMap . properties resource file may contain the following entries:

class.Address=STRUCT SCOTT.ADDRESS
class.pack.Person=PERSON
class.pack.Manager$InnerPM=STRUCT PRODUCT_MANAGER

Although the period (.) separates package and class name, you must use the dollar
sign ($) to separate an inner class name.

Important: If you used the default Oracle-specific code generation
in this example, then any iterator that is used for a statement whose
context type is SDContext must also have been declared with the
same associated type map, SDMap, such as in the following
example:

#sgl public static iterator SDIter with (typeMap="SDMap");
SDContext sdctx = ...

SDIter sditer;
#sqgl [sdctx] sditer = { SELECT ...};

This is to ensure that proper code is generated for the iterator class.

This mechanism of specifying mappings in a type map resource is more complicated
than the non-standard alternative. Also, it is not possible to associate a type map
resource with the default connection context. The advantage is that all the mapping
information is placed in a single location, the type map resource. This means that the
type mapping in an already compiled application can be easily adjusted at a later time,
for example, to accommodate new SQL types and Java wrappers in an expanding
SQL-Java type hierarchy.

Be aware of the following;:

You must employ the SQLJ runtimel2 or runtimel2ee library to use this
feature. Type maps are represented as java.util.Map objects. These are exposed
in the SQL]J run time API and, therefore, cannot be supported by the generic run
time library.

You must use the Oracle SQL]J run time and Oracle-specific code generation or
profile customization if your SQLData wrapper classes occur as OUT or INOUT
parameters in SQL]J statements. This is because the SQL type of such parameters is
required for registerOutParameter () by the Oracle JDBC driver. Also, for
OUT parameter type registration, the SQL type is "frozen in" by the type map in
effect during translation.

The SQLJ type map is independent of any JDBC type map you may be using on
the underlying connection. Thus, you must be careful when you are mixing SQLJ
and JDBC code if both use SQLData wrappers. However, you can easily extract
the type map in effect on a given SQL]J connection context:

ctx.getTypeMap () ;

Objects, Collections, and OPAQUE Types 6-11

Custom Java Classes

Mapping Specified in Static Field of Wrapper Class
A class that implements SQLData can satisfy the following non-standard requirement:

s The Java class declares the String constant _SQI._NAME, which defines the name
of the SQL type that is being wrapped by the Java class. In the example, the
Address class would have the following field declaration:

public static final String _SQL_NAME="SCOTT.ADDRESS";

The following declaration would be in pack. Person:

public static final String _SQL_NAME="PERSON";

And the pack.Manager . InnerPM class would have the following:

public static final String _SQL_NAME="PRODUCT MANAGER";

Note that JPublisher always generates SQLData wrapper classes with the _SQL_NAME
field. However, this field is ignored in SQL]J statements that reference a type map.

Notes:

s If a class that implements the _SQL_NAME field is used in a
SQLJ statement with an explicit connection context type and
associated type map, then that type map is used and the
_SQL_NAME field is ignored. This simplifies migration of
existing SQL] programs to the new ISO SQL] standard.

» The static SQL-Java type correspondence specified in the
_SQL_NAME field is independent from any JDBC type map you
may be using on the underlying connection. Thus, you must be
careful when you are mixing SQL]J and JDBC code if both use
SQLData wrappers.

Compiling Custom Java Classes

You can include any . java files for your custom Java classes, whether ORAData or
SQLData implementations, on the SQL] command line together with the . sqlj files
for your application. However, this is not necessary if the SQLJ -checksource flag is
set to true, which is the default, and your classpath includes the directory where the
custom Java source is located.

Note: This discussion assumes you are creating . java files for your
custom objects and collections, not . sglj files. Any .sqglj files must
be included in the SQL] command line.

For example, if ObjectDemo . sqlj uses the ADDRESS and PERSON Oracle object

types and you have produced custom Java classes for these objects, then you can run
SQL]J as follows.

s If -checksource=true and the classpath includes the custom Java source
location:

o)

% sqglj ObjectDemo.sqglj

s If -checksource=false (this is a single wraparound line):

% sqglj ObjectDemo.sqglj Address.java AddressRef.java Person.java PersonRef.java

6-12 Oracle Database SQLJ Developer’'s Guide and Reference

Custom Java Classes

You also have the choice of using your Java compiler to compile custom . java source
files directly. If you do this, then you must do it prior to translating . sgl7 files.

See Also:
= "Source File Name Check (-checkfilename)" on page 8-54

s Chapter 8, "Translator Command Line and Options"

Note: Because ORAData implementations rely on Oracle-specific
features, SQLJ will report numerous portability warnings if you do
not use the ~-warn=noportable translator portability setting,
which is the default. For information about the -warn flag, refer to
"Translator Warnings (-warn)" on page 8-33.

Reading and Writing Custom Data

Through the use of custom Java class instances, the Oracle SQL] and JDBC
implementations allow you to read and write user-defined types as though they are
built-in types. Exactly how this is accomplished is transparent to the user.

For the mechanics of how data is read and written, for both ORAData implementations
and SQLData implementations, refer to the Oracle Database [DBC Developer’s Guide and
Reference.

Additional Uses for ORAData Implementations

To this point, discussion of custom Java classes has been for use as one of the
following.

= Wrappers for SQL objects: custom object classes, for use with
oracle.sqgl.STRUCT instances

s Wrappers for SQL references: custom reference classes, for use with
oracle.sql.REF instances

= Wrappers for SQL collections: custom collection classes, for use with
oracle.sqgl.ARRAY instances

It might be useful, however, to provide custom Java classes to wrap other
oracle.sql. * types as well, for customized conversions or processing. You can
accomplish this with classes that implement ORAData, but not SQLData, as in the
following examples:

s Perform encryption and decryption or validation of data.
s Perform logging of values that have been read or are being written.

= Parse character columns, such as character fields containing URL information, into
smaller components.

= Map character strings into numeric constants.

= Map data into more desirable Java formats, such as mapping a DATE field to
java.util.Date format.

» Customize data representation, for example, data in a table column is in feet, but
you want it represented in meters after it is selected.

» Serialize and deserialize Java objects, for example, into or out of RAW fields.

Objects, Collections, and OPAQUE Types 6-13

Custom Java Classes

Note: This sort of functionality is not possible through the
SQLData interface, as SQLData implementations can wrap only
structured object types.

See Also: "Serialized Java Objects" on page 6-50

General Use of ORAData: BetterDate.java

This example shows a class that implements the ORAData interface to provide a
customized representation of Java dates and can be used instead of java.sqgl.Date.

Note: This is not a complete application. There is no main ()
method.

import java.util.Date;

import oracle.sgl.ORAData;

import oracle.sqgl.DATE;

import oracle.sqgl.ORADataFactory;
import oracle.jdbc.OracleTypes;

// a Date class customized for user's preferences:
// - months are numbers 1..12, not 0..11
// - years are referred to through four-digit numbers, not two.

public class BetterDate extends java.util.Date
implements ORAData, ORADataFactory {
public static final int _SQL_TYPECODE = OracleTypes.DATE;

String[]monthNames={"JAN", "FEB", "MAR", "APR", "MAY", "JUN",
n JUL n , n AUG n , n SEPII , n OCT" , n NOV" , " DEC n } ;
String[]toDigit:{"OH, "l", l|2|l, "3"/ I|4I|, "5"/ I|6I|, "7"1 I|8I|, |l9l|}’.

static final BetterDate _BetterDateFactory = new BetterDate();
public static ORADataFactory getORADataFactory() { return _BetterDateFactory;}

// the current time...
public BetterDate() {
super () ;

public oracle.sqgl.Datum toDatum(java.sgl.Connection conn) {
return new DATE (toSQLDate());

public oracle.sqgl.ORAData create(oracle.sqgl.Datum dat, int intx) {
if (dat==null) return null;
DATE DAT = ((DATE)dat);
java.sqgl.Date jsd = DAT.datevValue();
return new BetterDate(jsd);

public java.sqgl.Date toSQLDate() {
java.sqgl.Date retval;
retval = new java.sqgl.Date(this.getYear()-1900, this.getMonth()-1,
this.getDate());

6-14 Oracle Database SQLJ Developer’'s Guide and Reference

Custom Java Classes

return retval;
}
public BetterDate(java.sql.Date d) {
this(d.getYear()+1900, d.getMonth()+1, d.getDate());
}
private static int [] deconstructString(String s) {
int [] retval = new int[3];
int y,m,d; char temp; int offset;
StringBuffer sb = new StringBuffer(s);
temp=sb.charAt (1) ;
// figure the day of month

if (temp < '0' || temp > '9') {
m = sb.charAt(0)-'0";
offset=2;
} else {
m = (sb.charAt(0)-'0")*10 + (temp-'0"');
offset=3;
}

// figure the month
temp = sb.charAt (offset+l);

if (temp < '0' || temp > '9') {
d = sb.charAt (offset)-'0";
offset+=2;
} else {
d = (sb.charAt (offset)-'0')*10 + (temp-'0"');
offset+=3;
}

// figure the year, which is either in the format "yy" or "yyyy"
// (the former assumes the current century)
if (sb.length() <= (offset+2)) {
y = (((new BetterDate()).getYear())/100)*100 +
(sb.charAt (offset)- '0') * 10 +
(sb.charAt (offset+l)- '0');
} else {
y = (sb.charAt(offset)- '0') * 1000 +
(sb.charAt (offset+1)- '0') * 100 +
(sb.charAt (offset+2)- '0') * 10 +
(sb.charAt (offset+3)- '0');
}
retval[0]=y;
retval([l]=m;
retval[2]=d;
// System.out.println("Constructing date from string as: "+d+"/"+m+"/"+y);
return retval;
}
private BetterDate(int [] stuff) {
this(stuff[0], stuff[l], stuff[2]);
}
// takes a string in the format: "mm-dd-yyyy" or "mm/dd/yyyy" or
// "mm-dd-yy" or "mm/dd/yy" (which assumes the current century)
public BetterDate(String s) {
this (BetterDate.deconstructString(s));

// years are as '1990', months from 1..12 (unlike java.util.Date!), date
// as 'l' to '31'
public BetterDate(int year, int months, int date) {

super (year-1900,months-1,date) ;

Objects, Collections, and OPAQUE Types 6-15

Custom Java Classes

}
// returns "Date: dd-mon-yyyy"
public String toString() {
int yr = getYear();
return getDate ()+"-"+monthNames[getMonth()-1]+"-"+
toDigit[(yr/1000)%10] +
toDigit[(yr/100)%10] +
toDigit[(yr/10)%10] +
toDigit [yr%10];
// return "Date: " + getDate() + "-"+getMonth()+"-"+(getYear()%100);
}
public BetterDate addDays (int i) {
if (i==0) return this;
return new BetterDate(getYear(), getMonth(), getDate()+1i);
}
public BetterDate addMonths(int i) {
if (i==0) return this;
int yr=getYear();
int mon=getMonth()+1i;
int dat=getDate();
while (mon<1) {
--yr;mon+=12;
}
return new BetterDate(yr, mon,dat);
}
// returns year as in 1996, 2007
public int getYear() {
return super.getYear()+1900;
}
// returns month as 1..12
public int getMonth() {
return super.getMonth()+1;
}
public boolean equals (BetterDate sd) {
return (sd.getDate() == this.getDate() &&
sd.getMonth() == this.getMonth() &&
sd.getYear () == this.getYear());
}
// subtract the two dates; return the answer in whole years
// uses the average length of a year, which is 365 days plus
// a leap year every 4, except 100, except 400 years =
// = 365 97/400 = 365.2425 days = 31,556,952 seconds
public double minusInYears (BetterDate sd) {
// the year (as defined in the preceding text) in milliseconds
long yearInMillis = 31556952L;
long diff = myUTC()-sd.myUTC();
return (((double)diff/(double)yearInMillis)/1000.0);
}
public long myUTC() {
return Date.UTC(getYear()-1900, getMonth()-1, getDate(),0,0,0);
}

// returns <0 if this is earlier than sd

// returns = if this == sd

// else returns >0

public int compare (BetterDate sd) ({
if (getYear()!=sd.getYear()) {return getYear()-sd.getYear();}
if (getMonth()!=sd.getMonth()) {return getMonth()-sd.getMonth();}
return getDate()-sd.getDate();

6-16 Oracle Database SQLJ Developer’'s Guide and Reference

User-Defined Types

User-Defined Types

This section contains examples of creating and using user-defined object types and
collection types in Oracle Database 11g.

Creating Object Types
SQL commands to create object types are of the following form:

CREATE TYPE typename AS OBJECT

(
attrnamel datatypel,
attrname2 datatype2,

attrnameN datatypeN
)i
Where typename is the desired name of your object type, at trnamel through

attrnameN are the desired attribute names, and datatypel through datatypeN are
the attribute data types.

The remainder of this section provides an example of creating user-defined object
types in Oracle Database 11g.

In this example, the following items are created using SQL:
= Two object types, PERSON and ADDRESS
= A typed table for PERSON objects

= An EMPLOYEES table that includes an ADDRESS column and two columns of
PERSON references

The script for creating these items is as follows:

/*** Using user-defined types (UDTs) in SQLJ ***/
/

/*** Create ADDRESS UDT ***/

CREATE TYPE ADDRESS AS OBJECT

(

street VARCHAR (60) ,
city VARCHAR (30) ,
state CHAR(2),
zip_code CHAR(5)

)

/

/*** Create PERSON UDT containing an embedded ADDRESS UDT ***/
CREATE TYPE PERSON AS OBJECT
(
name VARCHAR (30)
ssn NUMBER,
addr ADDRESS
)
/
/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON
/
/*** Create a relational table with two columns that are REFs
to PERSON objects, as well as a column which is an Address ADT. ***/

Objects, Collections, and OPAQUE Types 6-17

User-Defined Types

CREATE TABLE employees
(

empnumber INTEGER PRIMARY KEY,
person_data REF PERSON,

manager REF PERSON,

office_addr ADDRESS,

salary NUMBER

)
/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (

PERSON('Wolfgang Amadeus Mozart', 123456,

ADDRESS ('Am Berg 100', 'Salzburg', 'AT',6 '10424')))

/
INSERT INTO persons VALUES (

PERSON ('Ludwig van Beethoven', 234567,

ADDRESS ('Rheinallee', 'Bonn', 'DE', '69234')))

/
/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary) VALUES (

1001,

ADDRESS('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),

50000)
/
/** Set the manager and PERSON REFs for the employee **/
UPDATE employees

SET manager =
(SELECT REF (p) FROM persons p WHERE p.name = 'Wolfgang Amadeus Mozart')
/
UPDATE employees
SET person_data =
(SELECT REF (p) FROM persons p WHERE p.name = 'Ludwig van Beethoven')

Note: Use of a table alias, such as p in the example, is a
recommended general practice in the Oracle SQL implementation,
especially in accessing tables with user-defined types. It is required
syntax in some cases where object attributes are accessed. Even
when not required, it helps in avoiding ambiguities. Refer to the
Oracle Database SQL Reference for more information about table
aliases.

Creating Collection Types
There are two categories of collections

= Variable-length arrays (VARRAYS5)

= Nested tables

SQL commands to create VARRAY types are of the following form:

CREATE TYPE typename IS VARRAY (n) OF datatype;

The typename designation is the desired name of your VARRAY type, n is the desired

maximum number of elements in the array, and datatype is the data type of the
array elements. For example:

CREATE TYPE myvarr IS VARRAY(10) OF INTEGER;

SQL commands to create nested table types are of the following form:

6-18 Oracle Database SQLJ Developer’'s Guide and Reference

User-Defined Types

CREATE TYPE typename AS TABLE OF datatype;

The typename designation is the desired name of your nested table type and
datatype is the data type of the table elements. This can be a user-defined type as
well as a standard data type. A nested table is limited to one column, although that
one column type can be a complex object with multiple attributes. The nested table, as
with any database table, can have any number of rows. For example:

CREATE TYPE person_array AS TABLE OF person;

This command creates a nested table where each row consists of a PERSON object.

The rest of this section provides an example of creating a user-defined collection type,
as well as object types, in Oracle Database 11g.

The following items are created and populated using SQL:
= Two object types, PARTICIPANT_T and MODULE_T
= A collection type, MODULETBL_T, which is a nested table of MODULE_T objects

s A PROJECTS table that includes a column of PARTICIPANT T references and a
column of MODULETBL._T nested tables

= A collection type PHONE_ARRAY, which is a VARRAY of VARCHAR2 (30)

= PERSON and ADDRESS objects (repeating the same definitions used earlier in
"Creating Object Types" on page 6-17)

= An EMPLOYEES table, which includes a PHONE_ARRAY column
The script for creating these items is as follows:

Rem This is a SQL*Plus script used to create schema to demonstrate collection
Rem manipulation in SQLJ

CREATE TYPE PARTICIPANT_T AS OBJECT (
empno NUMBER (4) ,
ename VARCHAR2 (20) ,

job VARCHAR2 (12),
mgr NUMBER (4) ,
hiredate DATE,

sal NUMBER(7,2),

deptno NUMBER (2))

/

SHOW ERRORS

CREATE TYPE MODULE_T AS OBJECT (
module_id NUMBER (4),
module_name VARCHAR2 (20),
module_owner REF PARTICIPANT_T,
module_start_date DATE,
module_duration NUMBER)

/

SHOW ERRORS

CREATE TYPE MODULETBL_T AS TABLE OF MODULE_T;

/

SHOW ERRORS

CREATE TABLE projects (
id NUMBER (4),
name VARCHAR(30),
owner REF PARTICIPANT_ T,
start_date DATE,
duration NUMBER(3),
modules MODULETBL_T) NESTED TABLE modules STORE AS modules_tab;

Objects, Collections, and OPAQUE Types 6-19

JPublisher and the Creation of Custom Java Classes

SHOW ERRORS
CREATE TYPE PHONE_ARRAY IS VARRAY (10) OF varchar2(30)
/

/*** Create ADDRESS UDT ***/
CREATE TYPE ADDRESS AS OBJECT
(

street VARCHAR (60) ,
city VARCHAR (30),
state CHAR(2) ,
zip_code CHAR(5)

)
/
/*** Create PERSON UDT containing an embedded ADDRESS UDT ***/
CREATE TYPE PERSON AS OBJECT
(
name VARCHAR (30)
ssn NUMBER,
addr ADDRESS
)

/
CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
person_data REF person,
manager REF person,
office_addr address,
salary NUMBER,
phone_nums phone_array
)
/

JPublisher and the Creation of Custom Java Classes

Oracle offers flexibility in how users can customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm. Developers have the following choices in creating these custom Java
classes:

= Using the Oracle JPublisher utility to automatically generate custom Java classes
and using those classes directly without modification

= Using JPublisher to automatically generate custom Java classes and corresponding
subclasses, which can subsequently be user-modified for any desired functionality

= Manually coding custom Java classes without using JPublisher, if the classes meet
the requirements stated in "Custom Java Class Requirements" on page 6-8

Although you have the option of manually coding your custom Java classes, it is
advisable to instead use JPublisher-generated classes directly or modify
JPublisher-generated subclasses.

JPublisher can implement either the Oracle oracle.sqgl .ORAData interface or the
standard java.sqgl.SQLData interface when it generates a custom object class. If
you choose the ORAData implementation, then JPublisher will also generate a custom
reference class. For compatibility with older JDBC versions, JPublisher can also
generate classes that implement the deprecated oracle.sgl.CustomDatum
interface.

6-20 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

The SQLData interface is not intended for custom reference or custom collection
classes. If you want your code to be portable, then you have no choice but to use
standard weakly typed java.sqgl.Ref objects to map to references and
java.sqgl.Array objects to map to collections.

This section covers the following topics:

s What JPublisher Produces

= Generating Custom Java Classes

s JPublisher INPUT Files and Properties Files

s Creating Custom Java Classes and Specifying Member Names
s JPublisher Implementation of Wrapper Methods

» JPublisher Custom Java Class Examples

= Extending Classes Generated by JPublisher

See Also:
» Oracle Database JPublisher User's Guide
» Oracle Database [DBC Developer’s Guide and Reference

What JPublisher Produces

When you use JPublisher to generate custom Java classes, you can use either an
ORAData implementation, for custom object classes, custom reference classes, or
custom collection classes, or a SQLData implementation, for custom object classes
only. An ORAData implementation will also implement the ORADataFactory
interface, for creating instances of the custom Java class.

This is controlled by how you set the JPublisher ~usertypes option. A setting of
-usertypes=oracle specifies an ORAData implementation, and a setting of
-usertypes=jdbc specifies a SQLData implementation.

ORAData Implementation

When you run JPublisher for a user-defined object type and use the ORAData
implementation for your custom object class, JPublisher automatically creates the
following:

= A custom object class, typically in a . sqlj source file, to act as a type definition to
correspond to your Oracle object type

This class includes accessor methods for each attribute. For example, getFoo ()
and setFoo () are the accessor methods for the attribute foo. In addition,
JPublisher by default will generate wrapper methods in your class that invoke the
associated Oracle object methods executing in the server. However, this can be
disabled by setting -methods=false. In this case, JPublisher produces no
wrapper methods and generates . java files instead of . sql7 files for custom
objects.

= A related custom reference class for object references to your Oracle object type

This class includes a getValue () method that returns an instance of your custom
object class and a setValue () method that updates an object value in the
database, taking as input an instance of the custom object class.

A strongly typed reference class is always generated, regardless of whether the
SQL object type uses references.

Objects, Collections, and OPAQUE Types 6-21

JPublisher and the Creation of Custom Java Classes

s Custom classes for any object or collection attributes of the top-level object

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized.

When you run JPublisher for a user-defined collection type, choosing the ORAData
implementation, JPublisher automatically creates the following:

= A custom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded getArray () and setArray () methods to
retrieve or update a collection as a whole, a getElement () method and
setElement () method to retrieve or update individual elements of a collection,
and additional utility methods.

= A custom object class for the elements, if the elements of the collection are objects

This is necessary so that object elements can be materialized in Java whenever an
instance of the collection is materialized.

JPublisher-generated custom Java classes in any of these categories implement the
ORAData interface, the ORADataFactory interface, and the getORADataFactory ()
method.

Notes:

s If you specify the ORAData implementation, then the generated
classes will use Oracle-specific features and, therefore, will not
be portable.

= Although deprecated, JPublisher still supports implementation
of the CustomDatum interface through the -~compatible
option.

Strongly Typed Object References for ORAData Implementations

For Oracle ORAData implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed oracle.sql .REF class.
This is to provide greater type safety and to mirror the behavior in SQL, where object
references are strongly typed. The strongly typed classes, with names like PersonRef
for references to PERSON objects, are essentially wrappers for the REF class.

In these strongly typed REF wrappers, there is a getValue () method that produces
an instance of the SQL object that is referenced, in the form of an instance of the
corresponding Java class. (Or, in the case of inheritance, perhaps as an instance of a
subclass of the corresponding Java class.) For example, if there is a PERSON SQL object
type with a corresponding Person Java class, then there will also be a PersonRef
Java class. The getvalue () method of the PersonRef class would return a Person
instance containing the data for a PERSON object in the database.

Whenever a SQL object type has an attribute that is an object reference, the Java class
corresponding to the object type would have an attribute that is an instance of a Java
class corresponding to the appropriate reference type. For example, if there is a
PERSON object with a MANAGER REF attribute, then the corresponding Person Java
class will have a ManagerRef attribute.

SQLData Implementation

When you run JPublisher for a user-defined object type and choose the SQLData
implementation for your custom object class, JPublisher will produce a custom object

6-22 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

class to act as a type definition to correspond to your Oracle object type. This class will
include the following:

s Accessor methods for each attribute

s Implementations of the readSQL () and writeSQL () methods of the standard
SQLData interface

= Wrapper methods that invoke the Oracle object methods executing in the server,
unless you specify -methods=false when you run JPublisher

Because the SQLData interface is intended only for objects, however, and not for
references or collections, JPublisher will not generate a custom reference class for
references to the Oracle object type. You will have to use standard weakly typed
java.sqgl.Ref instances or perhaps oracle.sqgl.REF instances, if you do not
require portability. Note that REF instances, like custom reference class instances, have
Oracle extension methods, getValue () and setValue (), to read or write instances
of the referenced object. Standard Ref instances do not have this functionality.

Similarly, because you cannot use a SQLData implementation for a custom collection
class, you must use standard weakly typed java.sql.Array instances or perhaps
oracle.sqgl.ARRAY instances, if you do not require portability. Array and ARRAY
instances, like custom collection class instances, have getArray () functionality to
read the collection as a whole or in part, but do not have the element-level access and
writability offered by the getElement () and setElement () methods of the custom
collection class.

Note: The SQLData interface is defined in the JDBC specification
to be portable. However, if you want the SQLData implementation
produced by JPublisher to be portable, then you must avoid using
any Oracle-specific features and Oracle type mapping, which uses
the Oracle-specific oracle.sqgl. * classes.

Generating Custom Java Classes

This section discusses key JPublisher command-line functionality for specifying the
user-defined types that you want to map to Java and for specifying object class names,
collection class names, attribute type mappings, and wrapper methods. These key
points can be summarized as follows:

= Specify the implementation to use, through the JPublisher ~usertypes option.

= Specify user-defined types to map to Java. You can specify the custom object and
custom collection class names for JPublisher to use, or you can accept the default
names. Use the JPublisher -sql, -user, and -case options, as appropriate.

= Optionally specify attribute type mappings through the JPublisher -xxxtypes
options: -numbertypes, ~-builtintypes, and -lobtypes.

»s Choose whether or not JPublisher will create wrapper methods, in particular for
Oracle object methods. Use the JPublisher -methods flag, which is enabled by
default.

Note: Throughout the remainder of this section, discussion of
custom reference classes or custom collection classes is simplified
by referring only to ORAData implementations.

Objects, Collections, and OPAQUE Types 6-23

JPublisher and the Creation of Custom Java Classes

Choose the Implementation for Generated Classes

Before running JPublisher, consider whether you want the generated classes to
implement the Oracle ORAData interface or the standard SQLData interface. Using
SQLData will likely make your code more portable, but using ORAData offers a
number of advantages, including no need for type maps.

Remember the following:

= You must use ORAData implementations for custom collection classes. The
SQLData interface does not support collections.

= Strongly typed reference classes are always generated for ORAData custom object
class implementations, but not for SQLData custom object class implementations.
The SQLData interface does not support strongly typed object references. Use the
weak java.sqgl.Ref type or oracle.sqgl.REF type instead.

Use the JPublisher ~usertypes option to specify which interface you want your
classes to implement. A setting of ~usertypes=oracle, which is the default,
specifies the ORAData interface, while a setting of ~usertypes=jdbc specifies the
SQLData interface.

Note: If you have a requirement to implement the CustomDatum
interface, which was replaced by ORAData and deprecated in
Oracle9i Database, then you can do so with a JPublisher
-compatible setting of customdatum. This, combined with the
-usertypes=oracle setting, results in generated classes
implementing the CustomDatum interface. The default is
-compatible=oradata.

The -compatible=81i or -compatible=both81i setting also
directs JPublisher to use CustombDatum, as well as resulting in code
generation that is backward compatible with Oracle8i versions of
JPublisher. Refer to the Oracle Database [Publisher User’s Guide for
more information.

The following JPublisher command-line examples will result in implementation of
ORAData, CustomDatum, and SQLData, respectively (assume % is a system prompt).

% jpub -usertypes=oracle ... <other option settings>
% jpub -usertypes=oracle -compatible=customdatum ... <other option settings>
% jpub -usertypes=jdbc ... <other option settings>

JPublisher will ignore a -~compatible=customdatumor -compatible=oradata
setting if ~-usertypes=Jjdbc.

Specify User-Defined Types to Map to Java

In using JPublisher to create custom Java classes, use the -sqgl option to specify the
user-defined SQL types that you want to map to Java. You can either specify the
custom object class names and custom collection class names, or you can accept the
defaults.

The default names of your top-level custom classes, the classes that will correspond to
the user-defined type names you specify to the -sgl option, are identical to the
user-defined type names as you enter them on the JPublisher command line. Because
SQL names in the database are not case-sensitive by default, you can capitalize them to

6-24 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

ensure that your class names are capitalized according to Java convention. For
example, if you want to generate a custom class for employee objects, you can run
JPublisher as follows:

% jpub -sgl=Employee ...

The default names of other classes, such as for the home_address objects that are
attributes of employee objects, are determined by the JPublisher -case option. If you
do not set the -case option, then it is set to mixed. This means that the default for the
custom class name is to capitalize the initial character of the corresponding
user-defined type name and the initial character of every word unit thereafter.
JPublisher interprets underscores (_), dollar signs ($), and any characters that are
illegal in Java identifiers as word-unit separators. These characters are discarded in the
process.

For example, for Oracle object type home_address, JPublisher would create class
HomeAddress in a HomeAddress.sqglj or . java source file.

Notes:

= Only SQL names that are not case-sensitiveare supported on
the JPublisher command line. If a user-defined type was
defined in a case-sensitive way in SQL, then you must specify
the name in the JPublisher INPUT file instead of on the
command line and in quotes.

» For backward compatibility to previous versions of JPublisher,
the -types option is still accepted as an alternative to -sgl.

On the JPublisher command line, use the following syntax for the -sqgl option:

-sqgl=udtl<:mapclassl><,udt2<:mapclass2>>,...,<udtN<:mapclassN>> ...

Note that you can specify multiple actions in a single option setting.
Use the —user option to specify the database schema. Following is an example:

% jpub -sgl=Myobj,mycoll:MyCollClass -user=scott/tiger

Note: Do not insert a space before or after the comma.

For the MYOBJ Oracle object, this command will name it as you typed it, creating
Myobj . sglj source to define a Myob3j class. For the MYCOLL Oracle collection, this
command will create source MyCollClass. java to define a MyCollClass class.

You can optionally specify schema names in the -sqgl option, such as in the following
example that specifies the scott schema:

% jpub -sgl=scott.Myobj,scott.mycoll:MyCollClass -user=scott/tiger

You cannot specify custom reference class names. JPublisher automatically derives
them by adding Ref to custom object class names. This is relevant to ORAData
implementations only. For example, if JPublisher produces the Myobj . sglj Java
source to define the Myobj custom object class, then it will also produce the
MyobjRef . java Java source to define a MyobjRef custom reference class.

Objects, Collections, and OPAQUE Types 6-25

JPublisher and the Creation of Custom Java Classes

Note: When specifying the schema, such as scott in the
preceding example, this is not incorporated into the custom Java
class name.

To create custom Java classes for the object and collection types defined in
"User-Defined Types" on page 6-17, you can run JPublisher as follows:

% jpub -user=scott/tiger
-sgl=Address, Person, Phone_array, Participant_t,Module_t,Moduletbl_t

Alternatively, to explicitly specify custom object class and custom collection class
names, run it as follows:

% jpub -user=scott/tiger -sgl=Address,Person,phone_array:PhoneArray,
participant_t:ParticipantT,module_t:ModuleT,moduletbl_t:ModuletblT

Note that each of the preceding two examples is a single wraparound command line.

The second example will produce the following Java source files: Address.sqlj,
AddressRef.java, Person.sdglj, PersonRef. java, PhoneArray. java,
ParticipantT.sqglj, ParticipantTRef.java, ModuleT.sqglj,

ModuleTRef. java, and ModuletblT. java. Examples of some of these source files
are provided in "JPublisher Custom Java Class Examples" on page 6-34.

So that it knows how to populate the custom Java classes, JPublisher connects to the
specified schema to determine attributes of your specified object types or elements of
your specified collection types.

Note: As an alternative to specifying multiple mappings in a
single -sql setting, you can use multiple -sgl options in the same
command line. The effect of multiple -sgl options is cumulative.

If you want to change how JPublisher uses character case in default names for the
methods and attributes that it generates, including lower-level custom Java class
names for attributes that are objects or collections, then you can accomplish this using
the -case option. There are four possible settings:

» -case=mixed (default)

The following will be uppercase: the first character of every word unit of a class
name, every word unit of an attribute name, and every word unit after the first
word unit of a method name. All other characters are in lowercase. JPublisher
interprets underscores (_), dollar signs ($), and any characters that are illegal in
Java identifiers as word-unit separators. These characters are discarded in the
process.

] —case=same

Character case is unchanged from its representation in the database. Underscores
and dollar signs are retained, and illegal characters are discarded.

m -case=upper

Lowercase letters are converted to uppercase. Underscores and dollar signs are
retained, and illegal characters are discarded.

m -case=lower

6-26 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Uppercase letters are converted to lowercase. Underscores and dollar signs are
retained, and illegal characters are discarded.

Note: If you run JPublisher without specifying the user-defined
types to map to Java, it will process all user-defined types in the
schema. Generated class names, for both your top-level custom
classes and any other classes for object attributes or collection
elements, will be based on the setting of the -case option.

Specify Type Mappings
JPublisher offers several choices for how to map user-defined types and their attribute
and element types between SQL and Java.

JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as noted:

Numeric types: Anything stored as SQL type NUMBER

Use the JPublisher -numbertypes option to specify type-mapping for numeric
types.
Large object (LOB) types: SQL types BLOB and CLOB

Use the JPublisher -1obtypes option to specify type-mapping for LOB types.

Built-in types: Anything stored as a SQL type not covered by the preceding
categories, for example, CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher -builtintypes option to specify type-mapping for built-in
types.

JPublisher defines the following type-mapping modes:

JDBC mapping (setting jdbc): Uses standard default mappings between SQL
types and Java native types. This setting is valid for the -numbertypes,
-lobtypes, and -builtintypes options.

Oracle mapping (setting oracle): Uses corresponding oracle.sqgl types to map
to SQL types. This setting is valid for the -numbertypes, -lobtypes, and
-builtintypes options.

Object-JDBC mapping (setting objectjdbc): This is an extension of JDBC
mapping. Where relevant, object-JDBC mapping uses numeric object types from
the standard java.lang package, such as java.lang.Integer, Float, and
Double, instead of primitive Java types, such as int, float, and double. The
java.lang types are nullable, but the primitive types are not. This setting is valid
for the -numbertypes option only.

BigDecimal mapping (setting bigdecimal): Uses java.math.BigDecimal to
map to all numeric attributes. This is appropriate if you are dealing with large
numbers, but do not want to map to the oracle.sqgl.NUMBER type. This setting
is valid for the -numbertypes option only.

Note: Using BigDecimal mapping can significantly degrade
performance.

If you do not specify mappings for the attribute types of a SQL object type or the
element types of a SQL collection type, then JPublisher uses the following defaults:

Objects, Collections, and OPAQUE Types 6-27

JPublisher and the Creation of Custom Java Classes

s For numeric types, object-JDBC mapping is the default mapping.
= For LOB types, Oracle mapping is the default mapping.
s For built-in type types, JDBC mapping is the default mapping.

If you want alternate mappings, then use the -numbertypes, -lobtypes, and
-builtintypes options as necessary, depending on the attribute types you have and
the mappings you desire.

If an attribute type is itself a SQL object type, then it will be mapped according to the
-usertypes setting.

Note: If you specify a SQLData implementation for the custom
object class and want the code to be portable, then you must use
portable mappings for the attribute types. The defaults for numeric
types and built-in types are portable, but for LOB types you must
specify -lobtypes=jdbc.

Table 6-1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Table 6-1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type JPublisher Mapping

Category Option Mapping Settings Default

UDT types -usertypes oracle, jdbc oracle

Numeric types -numbertypes oracle, jdbc, objectjdbc, objectjdbc
bigdecimal

LOB types -lobtypes oracle, jdbc oracle

Built-in types -builtintypes oracle, jdbc jdbc

Note: The JPublisher -mapping option used in previous releases
is deprecated but still supported. For information about how
JPublisher converts -mapping option settings to settings for the
new mapping options, refer to the Oracle Database [Publisher User's
Guide.

Generate Wrapper Methods

In creating custom object classes to map Oracle objects to Java, the -methods option
instructs JPublisher whether to include Java wrappers for Oracle object methods. The
default -methods=true setting generates wrappers and also results in JPublisher
generating a . sqlj file instead of a . java file for a custom object class, unless the
underlying SQL object actually has no methods.

Wrapper methods generated by JPublisher are always instance methods, even when
the original object methods are static. The following example shows how to set the
-methods option:

% jpub -sgl=Myobj,mycoll:MyCollClass -user=scott/tiger -methods=true

This will use default naming. The Java method names will be derived in the same
fashion as custom Java class names, except that the initial character will be lowercase.
For example, by default an object method name of CALC_SAL results in a Java

6-28 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

wrapper method of calcSal (). Alternatively, you can specify desired Java method
names, but this requires use of a JPublisher INPUT file.

Note: The -methods option has additional uses as well, such as
for generating wrapper classes for packages or wrapper methods
for package methods. This is beyond the scope of this manual.
Refer to the Oracle Database JPublisher User’s Guide for information.

Regarding Overloaded Methods

If you run JPublisher for an Oracle object that has an overloaded method where
multiple signatures have the same corresponding Java signature, then JPublisher will
generate a uniquely named method for each signature. It accomplishes this by
appending _n to function names, where n is a number. This is to ensure that no two
methods in the generated custom Java class have the same name and signature. For
example, consider the SQL functions defined in creating a MY_TYPE object type:

CREATE OR REPLACE TYPE my_type AS OBJECT
(

MEMBER FUNCTION myfunc(x INTEGER)
RETURN my_return IS
BEGIN

END;

MEMBER FUNCTION myfunc(y SMALLINT)
RETURN my_return IS
BEGIN

END;
)i

Without precaution, both definitions of my func result in the following name and
signature in Java:

myfunc (Integer)

This is because both INTEGER and SMALLINT in SQL map to the Java Integer type.

Instead, JPublisher might call one myfunc_1 and the other myfunc_2. The _nis
unique for each. In simple cases it will likely be _1, _2, and so on, but it might
sometimes be arbitrary, other than being unique for each.

Note: How JPublisher handles overloaded wrapper methods
applies to SQL functions created within an object or within a
package, but not to top-level functions. Overloading is not allowed
at the top level.

Generate Custom Java Classes and Map Alternate Classes

You can use JPublisher to generate a custom Java class but instruct it to map the object
type or collection type to an alternative class instead of to the generated class.

A typical scenario is to treat JPublisher-generated classes as superclasses, extend them
to add functionality, and map the object types to the subclasses. For example, presume

Objects, Collections, and OPAQUE Types 6-29

JPublisher and the Creation of Custom Java Classes

you have an Oracle object type ADDRESS and want to produce a custom Java class for
it that has functionality beyond what is produced by JPublisher. You can use
JPublisher to generate a JAddress custom Java class for extending it to produce a
MyAddress class. Under this scenario you will add any special functionality to
MyAddress and will want JPublisher to map ADDRESS objects to that class, not to the
JAddress class. You will also want JPublisher to produce a reference class for
MyAddress, not JAddress.

JPublisher has functionality to streamline the process of mapping to alternative classes.
Use the following syntax in your -sqgl option setting:

-sqgl=object_type:generated class:map_class

For the preceding example, use this setting:

-sql=ADDRESS:JAddress: MyAddress

This generates class JAddress in source file JAddress . sglj (or possibly . java)
but does the following:

= Maps the ADDRESS object type to the MyAddress class, not to the JAddress
class. Therefore, if you retrieve an object from the database that has an ADDRESS
attribute, then this attribute will be created as an instance of MyAddress in Java.
Or, if you retrieve an ADDRESS object directly, then you will retrieve it into a
MyAddress instance.

» Creates a MyAddressRef class in MyAddressRef . java, instead of creating a
JAddressRef class.

s Creates an initial version of the MyAddress class in a MyAddress . sqlj source
file (or possibly MyAddress . java), unless the file already exists, in which case it
is not changed.

MyAddress subclasses JAddress. In order to implement the extended functionality
for MyAddress, you can start with the JPublisher-generated MyAddress source file,
editing it as desired.

For further discussion about extending JPublisher-generated classes (continuing the
preceding example), refer to "Extending Classes Generated by JPublisher" on
page 6-37.

JPublisher INPUT Files and Properties Files

JPublisher supports the use of special INPUT files and standard properties files to
specify type mappings and additional option settings.

Using JPublisher INPUT Files

You can use the JPublisher -input command-line option to specify an INPUT file for
JPublisher to use for additional type mappings. SQL in an INPUT file is equivalent to
-sgl on the command line, and the AS or GENERATE. . . AS syntax is equivalent to the
command-line colon syntax. Use the following syntax, specifying just one mapping
per SQL command:

SQL udtl <GENERATE GeneratedClassl> <AS MapClassl>
SQL udt2 <GENERATE GeneratedClass2> <AS MapClass2>

This generates GeneratedClassl and GeneratedClass2, but maps udtl to
MapClassl and udt2 to MapClass2.

6-30 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Note: If a user-defined type was defined in a case-sensitive way in
SQL, then you must specify the name in quotes. For example:

SQL "CaseSenstiveType" AS CaseSensitiveType
If you are also specifying a schema name that is not case-sensitive:

SQL SCOTT. "CaseSensitiveType" AS CaseSensitiveType
Alternatively, to also specify a case-sensitive schema name:

SQL "Scott"."CaseSensitiveType" AS CaseSensitiveType

The AS clauses are optional.

Avoid using a period (.) as part of the schema name or type name
itself.

INPUT File Example

In the following example, JPublisher will pick up the ~user option from the
command line and go to INPUT file myinput . in for type mappings.
Command line:

% jpub -input=myinput.in -user=scott/tiger

Contents of INPUT file myinput.in:

SQL Myobj
SQL mycoll AS MyCollClass
SQL employee GENERATE Employee AS MyEmployee

This accomplishes the following;:

= User-defined type MYOBJ gets the custom object class name Myobj because that is
how you typed it. JPublisher creates source Myobj . sglj (or possibly
Myobj . java, if Myobj has no methods) and MyobjRef . java.

s User-defined type MYCOLL is mapped to MyCollClass. JPublisher creates a
MyCollClass. java source file.

» User-defined type EMPLOYEE is mapped to the MyEmployee class. JPublisher
creates source Employee.sqglj (or possibly Employee. java) and
MyEmployeeRef . java, as well as an initial version of MyEmployee.sqglj (or
. Java) unless the file already exists. If you retrieve an object from the database

that has an EMPLOYEE attribute, then this attribute would be created as an instance

of MyEmployee in Java. Or, if you retrieve an EMPLOYEE object directly,
presumably you will retrieve it into a MyEmployee instance. You are responsible
for the MyEmployee code, but for convenience you can start with the
JPublisher-generated MyEmployee source file and edit it to implement your
specialized functionality for EMPLOYEE objects in Java. MyEmployee subclasses
the Employee class.

Using JPublisher Properties Files
You can use the JPublisher -props command-line option to specify a properties file
for JPublisher to use for additional type mappings and other option settings.

In a properties file, jpub. (including the period) is equivalent to the command-line
"-" (single-dash), and other syntax remains the same. Specify only one option per line.

Objects, Collections, and OPAQUE Types 6-31

JPublisher and the Creation of Custom Java Classes

For type mappings, for example, jpub. sql is equivalent to -sgl. You can specify
multiple mappings in a single jpub. sql setting. Alternatively, you can use multiple
jpub.sqgl options. The effect would be cumulative, as for multiple -sgl options on
the command line.

Note: The behavior of properties files is to ignore any line that
does not begin with jpub. or --jpub. (two dashes followed by
jpub.). This enables you to use the same file as both a SQL script
to create the types and a properties file for JPublisher. If you start
each JPublisher statement with "--", which indicates a SQL
comment, it will be ignored by SQL*Plus. And SQL statements will
be ignored by JPublisher.

Properties File Example

In the following example, JPublisher will pick up the -user option from the
command line and go to the jpub.properties properties file for type mappings
and the attribute-mapping option.

Command line:

% jpub -props=jpub.properties -user=scott/tiger

Contents of properties file jpub.properties:
jpub.sgl=Myobj,mycoll:MyCollClass, employee:Employee:MyEmployee

jpub.usertypes=oracle

This produces the same results as the preceding input-file example, explicitly
specifying the oracle mapping setting.

Note: Unlike SQLJ, JPublisher has no default properties file. To
use a properties file, you must use the -props option.

Creating Custom Java Classes and Specifying Member Names

In generating custom Java classes, you can specify the names of any attributes or
methods of the custom class. However, this cannot be specified on the JPublisher
command line. You must specify it in a JPublisher INPUT file using TRANSLATE
syntax, as follows:

SQL udt <GENERATE GeneratedClass> <AS MapClass> <TRANSLATE membernamel AS
Javanamel> <, membername? AS JavanameZ> ...

TRANSLATE pairs (membernameN AS JavanameN) are separated by commas.

For example, presume the EMPLOYEE Oracle object type has an ADDRESS attribute that
you want to call HomeAddress, and a GIVE_RAISE method that you want to call
giveRaise (). Also presume that you want to generate an Employee class but map
EMPLOYEE objects to a MyEmployee class that you will create. (This is not related to
specifying member names, but provides a full example of INPUT file syntax.)

SQL employee GENERATE Employee AS MyEmployee
TRANSLATE address AS HomeAddress, GIVE_RAISE AS giveRaise

6-32 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Notes:

= When you specify member names, any member you do not
specify will be given the default naming.

= The reason to capitalize the specified attribute, HomeAddress
instead of homeAddress, is that it will be used exactly as
specified to name the accessor methods. For example,
getHomeAddress () follows naming conventions, but
gethomeAddress () does not.

JPublisher Implementation of Wrapper Methods

This section describes how JPublisher generates wrapper methods and how wrapper
method calls are processed at run time.

Generation of Wrapper Methods
The following points describe how JPublisher generates wrapper methods:

JPublisher-generated wrapper methods are implemented in SQL]J. Therefore,
whenever -methods=true, the custom object class will be defined in a . sql7j file
instead of in a . java file, assuming the object type defines methods. Run SQL]J to
translate the . sqglj file.

Note: Even if the object type does not define methods, you can
ensure that a . sqlj file is generated by setting
-methods=always. Refer to the Oracle Database JPublisher User’s
Guide for more information.

All wrapper methods generated by JPublisher are implemented as instance
methods. This is because a database connection is required for you to invoke the
corresponding server method. Each instance of a JPublisher-generated custom
Java class has a connection associated with it.

Run Time Execution of Wrapper Method Calls

The following points describe what JPublisher-generated Java wrapper methods
execute at run time. In this discussion, "Java wrapper method" refers to a method in
the custom Java object, while "wrapped SQL method" refers to the SQL object method
that is wrapped by the Java wrapper method.

The custom Java object is converted to a SQL object and passed to the database,
where the wrapped SQL method is invoked. After this method invocation, the
new value of the SQL object is returned to Java in a new custom Java object, either
as a function return from the wrapped SQL method, if the SQL method is a stored
procedure, or as an array element in an additional output parameter, if the SQL
method is a stored function and there already is a function return.

Any output or input-output parameter is passed as the element of a one-element
array. If the parameter is input-output, then the wrapper method takes the array
element as input. After processing, the wrapper assigns the output to the array
element.

Objects, Collections, and OPAQUE Types 6-33

JPublisher and the Creation of Custom Java Classes

JPublisher Custom Java Class Examples

This section provides examples of JPublisher-generated ORAData implementations for
the following user-defined types:

= A custom object class (Address, corresponding to the Oracle object type
ADDRESS) and related custom reference class (AddressRef)

= A custom collection class (ModuletblT, corresponding to the Oracle collection
type MODULETBL_T)

Assume that the -methods option has its default t rue setting and that the ADDRESS
type has methods, so that a . sqglj file is generated for the Address class.

See Also: Oracle Database [Publisher User’s Guide for examples of
JPublisher-generated SQLData implementations, as well as further
examples of JPublisher-generated ORAData implementations.

Custom Object Class: Address.sqlj

Following is an example of the source code that JPublisher generates for a custom
object class. Implementation details have been omitted.

In this example, unlike in "Creating Object Types" on page 6-17, assume the Oracle
object ADDRESS has only the street and zip_code attributes.

package bar;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sgl.ORAData;

import oracle.sgl.ORADataFactory;
import oracle.sqgl.Datum;

import oracle.sqgl.STRUCT;

import oracle.jpub.MutableStruct;

public class Address implements ORAData, ORADataFactory

{
public static final String _SQL_NAME = "SCOTT.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

public static ORADataFactory getORADataFactory()
{ ...}

/* constructors */
public Address()
{ ...}

public Address(String street, java.math.BigDecimal zip_code)
throws SQLException
{ ...}

/* ORAData interface */
public Datum toDatum(Connection c¢) throws SQLException

{ ...}

/* ORADataFactory interface */

public ORAData create(Datum d, int sglType) throws SQLException
{ ...}

/* accessor methods */

6-34 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

public String getStreet() throws SQLException
{ ...}

public void setStreet (String street) throws SQLException
{ ...}

public java.math.BigDecimal getZipCode() throws SQLException
{ ...}

public void setZipCode(java.math.BigDecimal zip_code) throws SQLException

{ ...}

Custom Reference Class: AddressRef.java

Following is an example of the source code that JPublisher generates for a custom
reference class to be used for references to ADDRESS objects. Implementation details
have been omitted.

package bar;

import java.sql.SQLException;
import java.sqgl.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sgl.ORAData;

import oracle.sqgl.ORADataFactory;
import oracle.sqgl.Datum;

import oracle.sql.REF;

import oracle.sqgl.STRUCT;

public class AddressRef implements ORAData, ORADataFactory

{
public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.REF;

public static ORADataFactory getORADataFactory ()
{ ...}

/* constructors */
public AddressRef ()
{ ...}

public static AddressRef (ORAData o) throws SQLException
{ ...}

/* ORAData interface */
public Datum toDatum(Connection c¢) throws SQLException

{ ...}

/* ORADataFactory interface */

public ORAData create(Datum d, int sglType) throws SQLException
{ ...}

public static AddressRef cast(ORAData o) throws SQLException
{ ...}

public Address getValue() throws SQLException
{ ...}

Objects, Collections, and OPAQUE Types 6-35

JPublisher and the Creation of Custom Java Classes

public void setValue(Address c) throws SQLException
{ ...}

Custom Collection Class: ModuletblT.java

Following is an example of the source code that JPublisher generates for a custom
collection class. Implementation details have been omitted.

import java.sql.SQLException;

import java.sqgl.Connection;

import oracle.jdbc.OracleTypes;

import oracle.sgl.ORAData;

import oracle.sqgl.ORADataFactory;

import oracle.sqgl.Datum;

import oracle.sql.ARRAY;

import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class ModuletblT implements ORAData, ORADataFactory

{
public static final String _SQL_NAME = "SCOTT.MODULETBL_T";
public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

public static ORADataFactory getORADataFactory ()
{ ...}

/* constructors */
public ModuletblT()
{ ...}

public ModuletblT (ModuleT[] a)
{ ...}

/* ORAData interface */
public Datum toDatum(Connection c) throws SQLException

{ ...}

/* ORADataFactory interface */
public ORAData create(Datum d, int sqglType) throws SQLException
{ ...}

public String getBaseTypeName() throws SQLException
{ ...}

public int getBaseType() throws SQLException
{ ...}

public ArrayDescriptor getDescriptor() throws SQLException
{ ...}

/* array accessor methods */
public ModuleT[] getArray() throws SQLException
{ ...}

public void setArray(ModuleT[] a) throws SQLException
{ ...}

public ModuleT[] getArray(long index, int count) throws SQLException

6-36 Oracle Database SQLJ Developer’'s Guide and Reference

JPublisher and the Creation of Custom Java Classes

{ ...}

public void setArray(ModuleT[] a, long index) throws SQLException
{ ...}

public ModuleT getObjectElement (long index) throws SQLException
{ ...}

public void setElement (ModuleT a, long index) throws SQLException
{ ...}

Extending Classes Generated by JPublisher

You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields. You can accomplish this by
extending the JPublisher-generated class.

For example, suppose you want JPublisher to generate the JAddress class from the
ADDRESS SQL object type. You also want to use a MyAddress class to represent
ADDRESS objects and implement special functionality. The MyAddress class must
extend JAddress.

Another way to enhance the functionality of a JPublisher-generated class is to simply
add methods to it. However, adding methods to the generated class is not
recommended if you anticipate running JPublisher at some future time to regenerate
the class. If you run JPublisher to regenerate a class that you have modified in this
way, then you would have to save a copy and manually merge your changes back in.

JPublisher Functionality for Extending Generated Classes

The syntax to have JPublisher generate JAddress but map to MyAddress is as
follows:

-sql=ADDRESS:JAddress :MyAddress

Or, use the following in an INPUT file:

SQL ADDRESS GENERATE JAddress AS MyAddress

As a result of this, JPublisher will generate the MyAddressRef reference class, rather
than JAddressRef, in MyAddressRef . java.

In addition, JPublisher alters the code it generates to implement the following
functionality:

s The MyAddress class, instead of the JAddress class, is used to represent
attributes whose SQL type is ADDRESS.

s The MyAddress class, instead of the JAddress class, is used to represent method
arguments and function results whose type is ADDRESS.

s The MyAddress factory, instead of the JAddress factory, is used to construct Java
objects whose SQL type is ADDRESS.

You would presumably use MyAddress similarly in any additional code that you
write.

At run time, the Oracle JDBC driver will map any occurrences of ADDRESS data in the
database to MyAddress instances, instead of to JAddress instances.

Objects, Collections, and OPAQUE Types 6-37

JPublisher and the Creation of Custom Java Classes

Requirements of Extended Classes

By default, JPublisher will create an initial version of the MyAddress user subclass in
MyAddress . sqlj, if the original class uses methods and you are publishing these
methods, or MyAddress. java, unless the file to be created already exists, in which
case it will not be changed. You can edit this file as necessary to add your desired
functionality.

MyAddress must have a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

As a result of extending the JPublisher-generated class, the subclass will inherit
definitions of the _SQL_NAME field, which it requires, and the _SQL_TYPECODE field.

In addition, one of the following will be true.

= If the JPublisher-generated class implements the ORAData and ORADataFactory
interfaces, then the subclass will inherit this implementation and the necessary
toDatum() and create () functionality of the generated class. The subclass
implements a getORADataFactory () method that returns an instance of your
map class, such as a MyAddress object.

» If the JPublisher-generated class implements the SQLData interface, then the
subclass will inherit this implementation and the necessary readsQL () and
writeSQL () functionality of the generated class.

JPublisher-Generated Custom Object Class: JAddress.sqlj

The code for the JPublisher-generated JAddress class, implementing ORAData and
ORADataFactory, is mostly identical to the code shown previously for the Address
class, with the exception that mentions of Address are replaced by mentions of
JAddress.

JPublisher-Generated Alternate Reference Class: MyAddressRef.java

Continuing the example in the preceding sections, consider code for the
JPublisher-generated reference class, MyAddressRef (as opposed to JAddressRef,
because MyAddress is the class that ADDRESS objects map to). This class also
implements ORAData and ORADataFactory. The implementation is nearly identical
to that of AddressRef . java, except for the change in class name and the fact that
accessor methods use MyAddress instances instead of Address instances.

Extended Custom Object Class: MyAddress.sqlj

Again continuing the example, here is sample code for a MyAddress class that
subclasses the JPublisher-generated JAddress class. The comments in the code show
what is inherited from JAddress. Implementation details have been omitted.

import java.sqgl.SQLException;

import oracle.sgl.ORAData;

import oracle.sqgl.ORADataFactory;

import oracle.sqgl.Datum;

import oracle.sqgl.STRUCT;

import oracle.jpub.runtime.MutableStruct;

public class MyAddress extends JAddress
{
/* _SQL_NAME inherited from MyAddress */
/* _SQL_TYPECODE inherited from MyAddress */

static _myAddressFactory = new MyAddress();

6-38 Oracle Database SQLJ Developer’'s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

public static ORADataFactory getORADataFactory()
{

return _myAddressFactory;

}

/* constructor */
public MyAddress()
{ super(); }

/* ORAData interface */
/* toDatum() inherited from JAddress */

/* ORADataFactory interface */
public ORAData create(oracle.sgl.Datum d, int sqglType) throws SQLException

{ ...}
/* accessor methods inherited from JAddress */

/* Additional methods go here. These additional methods (not shown)
are the reason that JAddress was extended.
*/

Strongly Typed Objects and References in SQLJ Executable Statements

The Oracle SQL]J implementation is flexible in how it enables you to use host
expressions and iterators in reading or writing object data through strongly typed
objects or references.

For iterators, you can use custom object classes as iterator column types. Alternatively,
you can have iterator columns that correspond to individual object attributes, similar
to extent tables, using column types that appropriately map to the SQL data types of
the attributes.

For host expressions, you can use host variables of your custom object class type or
custom reference class type. Alternatively, you can use host variables that correspond
to object attributes, using variable types that appropriately map to the SQL data types
of the attributes.

The remainder of this section provides examples of how to manipulate Oracle objects
using custom object classes, custom object class attributes, and custom reference
classes for host variables and iterator columns in SQL] executable statements.

The following two examples operate at the object level:
= Selecting Objects and Object References into Iterator Columns
» Updating an Object

The Inserting an Object Created from Individual Object Attributes example operates at
the scalar-attribute level.

The Updating an Object Reference example operates through a reference.

Refer to the Oracle object types ADDRESS and PERSON in "Creating Object Types" on
page 6-17.

Objects, Collections, and OPAQUE Types 6-39

Strongly Typed Objects and References in SQLJ Executable Statements

Selecting Objects and Object References into Iterator Columns

This example uses a custom Java class and a custom reference class as iterator column
types. Presume the following definition of the ADDRESS Oracle object type:

CREATE TYPE ADDRESS AS OBJECT
(street VARCHAR(40),
zip NUMBER) ;

And the following definition of the EMPADDRS table, which includes an ADDRESS
column and an ADDRESS reference column:

CREATE TABLE empaddrs
(name VARCHAR(60),
home ADDRESS,
loc REF ADDRESS);

Once you use JPublisher or otherwise create a custom Java class, Address, and
custom reference class, AddressRef, corresponding to the ADDRESS Oracle object
type, you can use Address and AddressRef in a named iterator as follows:

#sqgl iterator EmpIter (String name, Address home, AddressRef loc);

EmpIter ecur;
#sql ecur = { SELECT name, home, loc FROM empaddrs };
while (ecur.next()) {
Address homeAddr = ecur.home();
// Print out the home address.
System.out.println ("Name: " + ecur.name() + "\n" +
"Home address: " + homeAddr.getStreet() + " "4
homeAddr.getZip());
// Now update the loc address zip code through the address reference.
AddressRef homeRef = ecur.loc();
Address location = homeRef.getValue();
location.setZip(new BigDecimal (98765)) ;
homeRef.setValue(location) ;
}

The ecur . home () method call extracts an Address object from the home column of
the iterator and assigns it to the homeAddr local variable (for efficiency). The attributes
of that object can then be accessed using standard Java dot syntax:

homeAddr .getStreet ()
Use the getValue () and setValue () methods, standard with any

JPublisher-generated custom reference class, to manipulate the location address (in
this case its zip code).

Note: The remaining examples in this section use the types and
tables defined in the SQL script in "Creating Object Types" on
page 6-17.

Updating an Object

This example declares and sets an input host variable of the Address Java type to
update an ADDRESS object in a column of the employees table. Both before and after

6-40 Oracle Database SQLJ Developer’'s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

the update, the address is selected into an output host variable of the Address type
and printed for verification.

// Updating an object

static void updateObject ()
{

Address addr;
Address new_addr;
int empnum = 1001;

try {
#sqgl {
SELECT office_addr
INTO :addr

FROM employees
WHERE empnumber = :empnum };
System.out.println("Current office address of employee 1001:");

printAddressDetails (addr) ;
/* Now update the street of address */

String street ="100 Oracle Parkway";
addr.setStreet (street) ;

/* Put updated object back into the database */

try {
#sqgl {
UPDATE employees
SET office_addr :addr
WHERE empnumber = :empnum };
System.out.println
("Updated employee 1001 to new address at Oracle Parkway.");

/* Select new address to verify update */

try {
#sql {
SELECT office_addr
INTO :new_addr
FROM employees
WHERE empnumber = :empnum };

System.out.println("New office address of employee 1001:");
printAddressDetails (new_addr) ;

} catch (SQLException exn) {
System.out.println("Verification SELECT failed with "+exn); }

} catch (SQLException exn) {
System.out.println("UPDATE failed with "+exn); }

} catch (SQLException exn) {
System.out.println("SELECT failed with "+exn); }

Objects, Collections, and OPAQUE Types 6-41

Strongly Typed Objects and References in SQLJ Executable Statements

Note the use of the setStreet () accessor method of the Address object. Remember
that JPublisher provides such accessor methods for all attributes in any custom Java
class that it produces.

This example uses the printAddressDetails () utility. The source code for this
method is as follows:

static void printAddressDetails (Address a) throws SQLException

{

if (a == null) {
System.out.println("No Address available.");
return;

}

String street = ((a.getStreet()==null) ? "NULL street" : a.getStreet()) ;
String city = (a.getCity()==null) ? "NULL city" : a.getCity();

String state = (a.getState()==null) ? "NULL state" : a.getState();

String zip_code = (a.getZipCode()==null) ? "NULL zip" : a.getZipCode();

System.out.println("Street: '" + street + "'");
System.out.println("City: "o+ ity o+ ")
System.out.println("State: '" + state + "'");
System.out.println("Zip: '"o4+ zip_code + "'");

Inserting an Object Created from Individual Object Attributes

This example declares and sets input host variables corresponding to attributes of
PERSON and nested ADDRESS objects, then uses these values to insert a new PERSON
object into the persons table in the database.

// Inserting an object

static void insertObject()

{

String new_name = "NEW PERSON";
int new_ssn = 987654;
String new_street = "NEW STREET";
String new_city = "NEW CITY";
String new_state = "NS";
String new_zip = "NZIP";
/*
* Insert a new PERSON object into the persons table
*/
try {

#sqgl {

INSERT INTO persons
VALUES (PERSON (:new_name, :new_ssn,
ADDRESS (:new_street, :new_city, :new_state, :new_zip))) };

System.out.println("Inserted PERSON object NEW PERSON.");

} catch (SQLException exn) { System.out.println("INSERT failed with "+exn); }

6-42 Oracle Database SQLJ Developer’'s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

Updating an Object Reference

This example selects a PERSON reference from the persons table and uses it to update
a PERSON reference in the employees table. It uses simple input host variables to
check attribute value criteria. The newly updated reference is then used in selecting
the PERSON object to which it refers, so that information can be output to the user to
verify the change.

// Updating a REF to an object

static void updateRef ()
{
int empnum = 1001;
String new_manager = "NEW PERSON";

System.out.println("Updating manager REF.");
try {
#sql {
UPDATE employees
SET manager =
(SELECT REF(p) FROM persons p WHERE p.name = :new_manager)
WHERE empnumber = :empnum };

System.out.println("Updated manager of employee 1001. Selecting back");

} catch (SQLException exn) {
System.out.println("UPDATE REF failed with "+exn); }

/* Select manager back to verify the update */
Person manager;

try {
#sal {
SELECT deref (manager)
INTO :manager
FROM employees e
WHERE empnumber = :empnum };

System.out.println("Current manager of "+empnum+":");
printPersonDetails (manager) ;

} catch (SQLException exn) {
System.out.println("SELECT REF failed with "+exn); }

Note: This example uses table alias syntax (p) as discussed
previously. Also, the REF syntax is required in selecting a reference
through the object to which it refers, and the DEREF syntax is
required in selecting an object through a reference. Refer to the
Oracle Database SQL Reference for more information about table
aliases, REF, and DEREF.

Objects, Collections, and OPAQUE Types 6-43

Strongly Typed Collections in SQLJ Executable Statements

Strongly Typed Collections in SQLJ Executable Statements

As with strongly typed objects and references, the Oracle SQLJ implementation
supports different scenarios for reading and writing data through strongly typed
collections, using either iterators or host expressions.

From the perspective of a SQL]J developer, both categories of collections, VARRAY and
nested table, are treated essentially the same, but there are some differences in
implementation and performance.

The Oracle SQLJ implementation supports syntax choices so that nested tables can be
accessed and manipulated either apart from or together with their outer tables. In this
section, manipulation of a nested table by itself will be referred to as detail-level
manipulation and manipulation of a nested table together with its outer table will be
referred to as master-level manipulation.

Most of this section, after a brief discussion of some syntax, focuses on examples of
manipulating nested tables, given that their use is somewhat more complicated than
that of VARRAYS.

Refer to the MODULETBL_T Oracle collection type and related tables and object types
defined in "Creating Collection Types" on page 6-18.

Notes: In the Oracle SQL] implementation, VARRAY types and
nested table types can be retrieved only in their entirety. This is as
opposed to the Oracle SQL implementation, where nested tables
can be selectively queried.

This section covers the following topics:

= Accessing Nested Tables: TABLE syntax and CURSOR syntax
s Inserting a Row that Includes a Nested Table

= Selecting a Nested Table into a Host Expression

= Manipulating a Nested Table Using TABLE Syntax

= Selecting Data from a Nested Table Using a Nested Iterator

= Selecting a VARRAY into a Host Expression

= Inserting a Row that Includes a VARRAY

Accessing Nested Tables: TABLE syntax and CURSOR syntax

The Oracle SQL]J implementation supports the use of nested iterators to access data in
nested tables. Use the CURSOR keyword in the outer SELECT statement to encapsulate
the inner SELECT statement. This is shown in "Selecting Data from a Nested Table
Using a Nested Iterator" on page 6-47.

Oracle also supports use of the TABLE keyword to manipulate the individual rows of a
nested table. This keyword informs Oracle that the column value returned by a
subquery is a nested table, as opposed to a scalar value. You must prefix the TABLE
keyword to a subquery that returns a single column value or an expression that yields
a nested table.

The following example shows the use of the TABLE syntax:

UPDATE TABLE (SELECT a.modules FROM projects a WHERE a.id=555) b
SET module_owner=

6-44 Oracle Database SQLJ Developer’'s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

(SELECT ref (p) FROM employees p WHERE p.ename= 'Smith’)
WHERE b.module_name = ’Zebra’;

When you see TABLE used as it is here, realize that it is referring to a single nested
table that has been selected from a column of an outer table.

Note: This example uses table alias syntax (a for projects, b for
the nested table, and p for employees) as discussed previously.

Inserting a Row that Includes a Nested Table

This example shows an operation that manipulates the master level (outer table) and
detail level (nested tables) simultaneously and explicitly. This inserts a row in the
projects table, where each row includes a nested table of the MODULETBL_T type,
which contains rows of MODULE_T objects.

First, the scalar values are set (id, name, start_date, duration), then the nested
table values are set. This involves an extra level of abstraction, because the nested table
elements are objects with multiple attributes. In setting the nested table values, each
attribute value must be set for each MODULE_T object in the nested table. Finally, the
owner values, initially set to null, are set in a separate statement.

// Insert Nested table details along with master details

public static void insertProject2(int id) throws Exception
{
System.out.println("Inserting Project with Nested Table details..");
try {
#sgl { INSERT INTO Projects(id,name, owner,start_date,duration, modules)
VALUES (600, 'Ruby', null, '10-MAY-98', 300,
moduletbl_t (module_t (6001, 'Setup ', null, '01-JAN-98', 100),
module_t (6002, 'BenchMark', null, 'O5-FEB-98',620) ,
module_t (6003, 'Purchase', null, '15-MAR-98', 50),
module_t (6004, 'Install', null, '15-MAR-98',644),
module_t (6005, 'Launch', null, '12-MAY-98',34))) };
} catch (Exception e) {
System.out.println("Error:insertProject2");
e.printStackTrace() ;

}
// Assign project owner to this project

try {
#sql { UPDATE Projects pr
SET owner=(SELECT ref (pa) FROM participants pa WHERE pa.empno = 7698)
WHERE pr.id=600 };
} catch (Exception e) {
System.out.println("Error:insertProject2:update");
e.printStackTrace() ;

}

Selecting a Nested Table into a Host Expression

This example presents an operation that works directly at the detail level of the nested
table. Recall that ModuletblT is a JPublisher-generated custom collection class
(ORAData implementation) for MODULETBL_T nested tables, ModuleT is a

Objects, Collections, and OPAQUE Types 6-45

Strongly Typed Collections in SQLJ Executable Statements

JPublisher-generated custom object class for MODULE_T objects, and MODULETBL_T
nested tables contain MODULE_T objects.

A nested table of MODULE_T objects is selected from the modules column of the
projects table into a ModuletblT host variable.

Following that, the ModuletblT variable (containing the nested table) is passed to a
method that accesses its elements through its getArray () method, writing the data
to aModuleT[] array. All custom collection classes generated by JPublisher include a
getArray () method. Then each element is copied from the ModuleT[] array into a
ModuleT object, and individual attributes are retrieved through accessor methods
(getModuleName (), for example) and then printed. All JPublisher-generated custom
object classes include such accessor methods.

static ModuletblT mymodules=null;

public static void getModules2 (int projId)
throws Exception
{
System.out.println("Display modules for project " + projId);

try {
#sgl {SELECT modules INTO :mymodules
FROM projects WHERE id=:projId };
showArray (mymodules) ;
} catch(Exception e) {
System.out.println("Error:getModules2");
e.printStackTrace();

public static void showArray (ModuletblT a)
{

try {
if (a == null)
System.out.println("The array is null");
else {
System.out.println("printing ModuleTable array object of size "

+a.length());
ModuleT[] modules = a.getArray();

for (int i=0;i<modules.length; i++) {
ModuleT module = modules[i];
System.out.println("module "+module.getModuleId()+
", "+module.getModuleName () +
", "+module.getModuleStartDate () +
", "+module.getModuleDuration());

}

catch(Exception e) {
System.out.println("Show Array");
e.printStackTrace() ;

}

6-46 Oracle Database SQLJ Developer’'s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

Manipulating a Nested Table Using TABLE Syntax

This example uses TABLE syntax to work at the detail level to access and update
nested table elements directly, based on master-level criteria.

The assignModule () method selects a nested table of MODULE_T objects from the
MODULES column of the PROJECTS table, then updates MODULE_NAME for a particular
row of the nested table. Similarly, the deleteUnownedModules () method selects a
nested table of MODULE_T objects, then deletes any unowned modules in the nested
table, where MODULE_OWNER is null.

These methods use table alias syntax, as discussed previously. In this case, m is used
for the nested table, and p is used for the participants table.

/* assignModule
Illustrates accessing the nested table using the TABLE construct

and updating the nested table row
*/
public static void assignModule (int projId, String moduleName,

String modOwner) throws Exception

{

System.out.println("Update:Assign '"+moduleName+"' to '"+ modOwner+"'");

try {
#sqgl {UPDATE TABLE (SELECT modules FROM projects WHERE id=:projId) m
SET m.module_owner=
(SELECT ref (p) FROM participants p WHERE p.ename= :modOwner)
WHERE m.module_name = :moduleName };
} catch(Exception e) {
System.out.println("Error:insertModules");
e.printStackTrace();

}

/* deleteUnownedModules
// Demonstrates deletion of the Nested table element
*/

public static void deleteUnownedModules (int projId)
throws Exception

{

System.out.println("Deleting Unowned Modules for Project " + projId);
try {
#sqgl { DELETE TABLE (SELECT modules FROM projects WHERE id=:projId) m
WHERE m.module_owner IS NULL };
} catch(Exception e) {
System.out.println("Error:deleteUnownedModules") ;
e.printStackTrace();

}

Selecting Data from a Nested Table Using a Nested Iterator

SQLJ supports the use of nested iterators as a way of accessing nested tables. This
requires CURSOR syntax, as used in the following example. The code defines a named
iterator class, ModuleIter, then uses that class as the type for amodules column in
another named iterator class, ProjIter. Inside a populated ProjIter instance, each
modules item is a nested table rendered as a nested iterator.

Objects, Collections, and OPAQUE Types 6-47

Strongly Typed Collections in SQLJ Executable Statements

The CURSOR syntax is part of the nested SELECT statement that populates the nested
iterators. Once the data has been selected, it is output to the user through the iterator
accessor methods.

This example uses required table alias syntax, as discussed previously. In this case, a
for the projects table and b for the nested table.

// The Nested Table is accessed using the ModuleIter
// The ModulelIter is defined as Named Iterator

#sqgl public static iterator Modulelter(int moduleId ,
String moduleName ,
String moduleOwner) ;

// Get the Project Details using the ProjIter defined as
// Named Iterator. Notice the use of Modulelter:

#sqgl public static iterator ProjlIter(int id,
String name,
String owner,
Date start_date,
ModuleIter modules);

public static void listAllProjects() throws SQLException
{

System.out.println("Listing projects...");
// Instantiate and initialize the iterators

ProjIter projs = null;

ModuleIter mods = null;

#sqgl projs = {SELECT a.id,
a.name,
initcap(a.owner.ename) as "owner",
a.start_date,
CURSOR (
SELECT b.module_id AS "moduleId",

b.module_name